import gradio as gr
import numpy as np
import os
from PIL import Image
import torch
import torchvision.transforms as transforms
import options
import test
import importlib
from scipy.interpolate import interp1d, splev, splprep
import cv2
import subprocess

subprocess.run(["bash", "install_imaginaire.sh"])

def get_single(sat_img, style_img, x_offset, y_offset):
    name = ''
    for i in [name for name in os.listdir('demo_img') if 'case' in name]:
        style = Image.open('demo_img/{}/groundview.image.png'.format(i)).convert('RGB')
        style =np.array(style)
        if (style == style_img).all():
            name = i
            break

    input_dict = {}
    trans = transforms.ToTensor()
    input_dict['sat'] = trans(sat_img)
    input_dict['pano'] = trans(style_img)
    input_dict['paths'] = "demo.png"
    sky = trans(Image.open('demo_img/{}/groundview.sky.png'.format(name)).convert("L"))
    input_a = input_dict['pano']*sky
    sky_histc = torch.cat([input_a[i].histc()[10:] for i in reversed(range(3))])
    input_dict['sky_histc'] = sky_histc
    input_dict['sky_mask'] = sky

    for key in input_dict.keys():
        if isinstance(input_dict[key], torch.Tensor):
            input_dict[key] = input_dict[key].unsqueeze(0)

    args = ["--yaml=sat2density_cvact", "--test_ckpt_path=wandb/run-20230219_141512-2u87bj8w/files/checkpoint/model.pth", "--task=test_vid", "--demo_img=demo_img/case1/satview-input.png",
            "--sty_img=demo_img/case1/groundview.image.png", "--save_dir=output"]
    opt_cmd = options.parse_arguments(args=args)
    opt = options.set(opt_cmd=opt_cmd)
    opt.isTrain = False
    opt.name = opt.yaml if opt.name is None else opt.name
    opt.batch_size = 1

    m = importlib.import_module("model.{}".format(opt.model))
    model = m.Model(opt)

    # m.load_dataset(opt)
    model.build_networks(opt)
    ckpt = torch.load(opt.test_ckpt_path, map_location='cpu')
    model.netG.load_state_dict(ckpt['netG'])
    model.netG.eval()

    model.set_input(input_dict)
    
    model.style_temp = model.sky_histc
    opt.origin_H_W = [-(y_offset*256-128)/128, (x_offset*256-128)/128] # TODO: hard code should be removed in the future

    model.forward(opt)

    rgb = model.out_put.pred[0].clamp(min=0,max=1.0).cpu().detach().numpy().transpose((1,2,0))
    rgb = np.array(rgb*255, dtype=np.uint8)
    return  rgb

def get_video(sat_img, style_img, positions):
    name = ''
    for i in [name for name in os.listdir('demo_img') if 'case' in name]:
        style = Image.open('demo_img/{}/groundview.image.png'.format(i)).convert('RGB')
        style =np.array(style)
        if (style == style_img).all():
            name = i
            break

    input_dict = {}
    trans = transforms.ToTensor()
    input_dict['sat'] = trans(sat_img)
    input_dict['pano'] = trans(style_img)
    input_dict['paths'] = "demo.png"
    sky = trans(Image.open('demo_img/{}/groundview.sky.png'.format(name)).convert("L"))
    input_a = input_dict['pano']*sky
    sky_histc = torch.cat([input_a[i].histc()[10:] for i in reversed(range(3))])
    input_dict['sky_histc'] = sky_histc
    input_dict['sky_mask'] = sky

    for key in input_dict.keys():
        if isinstance(input_dict[key], torch.Tensor):
            input_dict[key] = input_dict[key].unsqueeze(0)

    args = ["--yaml=sat2density_cvact", "--test_ckpt_path=wandb/run-20230219_141512-2u87bj8w/files/checkpoint/model.pth", "--task=test_vid", "--demo_img=demo_img/case1/satview-input.png",
            "--sty_img=demo_img/case1/groundview.image.png", "--save_dir=output"]
    opt_cmd = options.parse_arguments(args=args)
    opt = options.set(opt_cmd=opt_cmd)
    opt.isTrain = False
    opt.name = opt.yaml if opt.name is None else opt.name
    opt.batch_size = 1

    m = importlib.import_module("model.{}".format(opt.model))
    model = m.Model(opt)

    # m.load_dataset(opt)
    model.build_networks(opt)
    ckpt = torch.load(opt.test_ckpt_path, map_location='cpu')
    model.netG.load_state_dict(ckpt['netG'])
    model.netG.eval()

    model.set_input(input_dict)
    
    model.style_temp = model.sky_histc

    unique_lst = list(dict.fromkeys(positions))
    pixels = []
    for x in positions:
        if x in unique_lst:
            if x not in pixels:
                pixels.append(x)
    pixels = np.array(pixels)
    tck, u = splprep(pixels.T, s=25, per=0)
    u_new = np.linspace(u.min(), u.max(), 80)
    x_new, y_new = splev(u_new, tck)
    smooth_path = np.array([x_new,y_new]).T

    rendered_image_list = []
    rendered_depth_list = []


    for i, (x,y) in enumerate(smooth_path):
        opt.origin_H_W = [(y-128)/128, (x-128)/128] # TODO: hard code should be removed in the future
        print('Rendering at ({}, {})'.format(x,y))
        model.forward(opt)

        rgb = model.out_put.pred[0].clamp(min=0,max=1.0).cpu().detach().numpy().transpose((1,2,0))
        rgb = np.array(rgb*255, dtype=np.uint8)
        rendered_image_list.append(rgb)

        rendered_depth_list.append(
            model.out_put.depth[0,0].cpu().detach().numpy()
        )

    output_video_path = 'output_video.mp4'

    frame_rate = 15
    frame_width = 512
    frame_height = 128

    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_video_path, fourcc, frame_rate, (frame_width, frame_height))

    for image_np in rendered_image_list:
        image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
        out.write(image_np)

    out.release()

    return "output_video.mp4"

def copy_image(image):
    return image

def show_image_and_point(image, x, y):
    x = int(x*image.shape[1])
    y = image.shape[0]-int(y*image.shape[0])
    mask = np.zeros(image.shape[:2])
    radius = min(image.shape[0], image.shape[1])//60
    for i in range(x-radius-2, x+radius+2):
        for j in range(y-radius-2, y+radius+2):
            if (i-x)**2+(j-y)**2<=radius**2:
                mask[j, i] = 1
    return (image, [(mask, 'render point')])

def add_select_point(image, evt: gr.SelectData, state1):
    if state1 == None:
        state1 = []
    x, y = evt.index
    state1.append((x, y))
    print(state1)
    radius = min(image.shape[0], image.shape[1])//60
    for i in range(x-radius-2, x+radius+2):
        for j in range(y-radius-2, y+radius+2):
            if (i-x)**2+(j-y)**2<=radius**2:
                image[j, i, :] = 0
    return image, state1

def reset_select_points(image):
    return image, []






with gr.Blocks() as demo:    
    gr.Markdown("# Sat2Density Demos")
    gr.Markdown("### select/upload the satllite image and select the style image")
    with gr.Row():
        with gr.Column():
            sat_img = gr.Image(source='upload', shape=[256, 256], interactive=True)
            img_examples = gr.Examples(examples=['demo_img/{}/satview-input.png'.format(i) for i in os.listdir('demo_img') if 'case' in i],
                inputs=sat_img, outputs=None, examples_per_page=20)
        with gr.Column():
            style_img = gr.Image()
            style_examples = gr.Examples(examples=['demo_img/{}/groundview.image.png'.format(i) for i in os.listdir('demo_img') if 'case' in i],
                inputs=style_img, outputs=None, examples_per_page=20)


    gr.Markdown("### select a certain point to generate single groundview image")
    with gr.Row():
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    slider_x = gr.Slider(0.2, 0.8, 0.5, label="x-axis position")
                    slider_y = gr.Slider(0.2, 0.8, 0.5, label="y-axis position")
                    btn_single = gr.Button(label="demo1")
                
                annotation_image = gr.AnnotatedImage()
    
        out_single = gr.Image()
        
    gr.Markdown("### draw a trajectory on the map to generate video")
    state_select_points = gr.State()
    with gr.Row():
        with gr.Column():
            draw_img = gr.Image(shape=[256, 256], interactive=True)  
        with gr.Column():
            out_video = gr.Video()
            reset_btn =gr.Button(value="Reset")
            btn_video = gr.Button(label="demo1")

    sat_img.change(copy_image, inputs = sat_img, outputs=draw_img)

    draw_img.select(add_select_point, [draw_img, state_select_points], [draw_img, state_select_points])
    sat_img.change(show_image_and_point, inputs = [sat_img, slider_x, slider_y], outputs = annotation_image)
    slider_x.change(show_image_and_point, inputs = [sat_img, slider_x, slider_y], outputs = annotation_image, show_progress='hidden')
    slider_y.change(show_image_and_point, inputs = [sat_img, slider_x, slider_y], outputs = annotation_image, show_progress='hidden')
    btn_single.click(get_single, inputs = [sat_img, style_img, slider_x, slider_y], outputs=out_single)
    reset_btn.click(reset_select_points, [sat_img], [draw_img, state_select_points])
    btn_video.click(get_video, inputs=[sat_img, style_img, state_select_points], outputs=out_video) # 触发


demo.launch()