venkat charan
commited on
Commit
•
b3c1a68
1
Parent(s):
1cc056f
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
3 |
+
|
4 |
+
|
5 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
6 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
7 |
+
|
8 |
+
model_id = "openai/whisper-large-v3"
|
9 |
+
|
10 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
11 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=False, use_safetensors=True
|
12 |
+
)
|
13 |
+
model.to(device)
|
14 |
+
|
15 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
16 |
+
|
17 |
+
pipe = pipeline(
|
18 |
+
"automatic-speech-recognition",
|
19 |
+
model=model,
|
20 |
+
tokenizer=processor.tokenizer,
|
21 |
+
feature_extractor=processor.feature_extractor,
|
22 |
+
max_new_tokens=128,
|
23 |
+
chunk_length_s=30,
|
24 |
+
batch_size=16,
|
25 |
+
return_timestamps=True,
|
26 |
+
torch_dtype=torch_dtype,
|
27 |
+
device=device,
|
28 |
+
)
|
29 |
+
result = pipe("/content/BryanThe_Ideal_Republic.ogg", generate_kwargs={"language": "french"})
|
30 |
+
print(result["text"]) # transcritpion
|
31 |
+
print(result["chunks"]) # translation
|
32 |
+
|
33 |
+
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
34 |
+
|
35 |
+
|
36 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
37 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True)
|
38 |
+
rag_model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever)
|
39 |
+
|
40 |
+
def retrieve_and_generate_response(transcribed_text):
|
41 |
+
# Tokenize the transcribed text
|
42 |
+
input_ids = tokenizer(transcribed_text, return_tensors="pt").input_ids
|
43 |
+
|
44 |
+
# Generate response
|
45 |
+
outputs = rag_model.generate(input_ids)
|
46 |
+
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
47 |
+
|
48 |
+
return response
|
49 |
+
|
50 |
+
response = retrieve_and_generate_response(result["text"])
|
51 |
+
print("Response:", response)
|
52 |
+
|