Spaces:
Running
on
T4
Running
on
T4
import pandas as pd | |
from dotenv import load_dotenv | |
import os | |
import base64 | |
from PIL import Image | |
import io | |
from datasets import Dataset, Image as HFImage | |
from pathlib import Path | |
from tqdm import tqdm | |
load_dotenv() | |
df = pd.read_json("output/vespa_feed_full.jsonl", lines=True) | |
df = pd.json_normalize(df["fields"].tolist()) | |
dataset_dir = Path("hf_dataset") | |
image_dir = dataset_dir / "images" | |
os.makedirs(image_dir, exist_ok=True) | |
def save_image(image_data, filename): | |
img_data = base64.b64decode(image_data) | |
img = Image.open(io.BytesIO(img_data)) | |
img.save(filename) | |
for idx, row in tqdm(df.iterrows()): | |
blur_filename = os.path.join(image_dir, f"blur_{idx}.jpg") | |
full_filename = os.path.join(image_dir, f"full_{idx}.jpg") | |
save_image(row["blur_image"], blur_filename) | |
save_image(row["full_image"], full_filename) | |
df.at[idx, "blur_image"] = blur_filename | |
df.at[idx, "full_image"] = full_filename | |
# Step 3: Convert to Hugging Face Dataset | |
dataset = ( | |
Dataset.from_dict(df.to_dict(orient="list")) | |
.cast_column("blur_image", HFImage()) | |
.cast_column("full_image", HFImage()) | |
) | |
dataset.push_to_hub("vespa-engine/gpfg-QA", private=True) | |