Spaces:
Running
on
L40S
Running
on
L40S
Upload folder using huggingface_hub
Browse files- backend/colpali.py +12 -5
- backend/vespa_app.py +13 -12
- frontend/app.py +34 -19
- main.py +42 -20
backend/colpali.py
CHANGED
@@ -14,6 +14,8 @@ from colpali_engine.utils.torch_utils import get_torch_device
|
|
14 |
from vidore_benchmark.interpretability.torch_utils import (
|
15 |
normalize_similarity_map_per_query_token,
|
16 |
)
|
|
|
|
|
17 |
|
18 |
|
19 |
class SimMapGenerator:
|
@@ -21,10 +23,14 @@ class SimMapGenerator:
|
|
21 |
Generates similarity maps based on query embeddings and image patches using the ColPali model.
|
22 |
"""
|
23 |
|
24 |
-
COLPALI_GEMMA_MODEL_NAME = "vidore/colpaligemma-3b-pt-448-base"
|
25 |
colormap = cm.get_cmap("viridis") # Preload colormap for efficiency
|
26 |
|
27 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
28 |
"""
|
29 |
Initializes the SimMapGenerator class with a specified model and patch dimension.
|
30 |
|
@@ -35,7 +41,8 @@ class SimMapGenerator:
|
|
35 |
self.model_name = model_name
|
36 |
self.n_patch = n_patch
|
37 |
self.device = get_torch_device("auto")
|
38 |
-
|
|
|
39 |
self.model, self.processor = self.load_model()
|
40 |
|
41 |
def load_model(self) -> Tuple[ColPali, ColPaliProcessor]:
|
@@ -47,7 +54,7 @@ class SimMapGenerator:
|
|
47 |
"""
|
48 |
model = ColPali.from_pretrained(
|
49 |
self.model_name,
|
50 |
-
torch_dtype=torch.bfloat16
|
51 |
device_map=self.device,
|
52 |
).eval()
|
53 |
|
@@ -250,7 +257,7 @@ class SimMapGenerator:
|
|
250 |
)
|
251 |
return bool(pattern.match(token))
|
252 |
|
253 |
-
|
254 |
def get_query_embeddings_and_token_map(
|
255 |
self, query: str
|
256 |
) -> Tuple[torch.Tensor, dict]:
|
|
|
14 |
from vidore_benchmark.interpretability.torch_utils import (
|
15 |
normalize_similarity_map_per_query_token,
|
16 |
)
|
17 |
+
from functools import lru_cache
|
18 |
+
import logging
|
19 |
|
20 |
|
21 |
class SimMapGenerator:
|
|
|
23 |
Generates similarity maps based on query embeddings and image patches using the ColPali model.
|
24 |
"""
|
25 |
|
|
|
26 |
colormap = cm.get_cmap("viridis") # Preload colormap for efficiency
|
27 |
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
logger: logging.Logger,
|
31 |
+
model_name: str = "vidore/colpali-v1.2",
|
32 |
+
n_patch: int = 32,
|
33 |
+
):
|
34 |
"""
|
35 |
Initializes the SimMapGenerator class with a specified model and patch dimension.
|
36 |
|
|
|
41 |
self.model_name = model_name
|
42 |
self.n_patch = n_patch
|
43 |
self.device = get_torch_device("auto")
|
44 |
+
self.logger = logger
|
45 |
+
self.logger.info(f"Using device: {self.device}")
|
46 |
self.model, self.processor = self.load_model()
|
47 |
|
48 |
def load_model(self) -> Tuple[ColPali, ColPaliProcessor]:
|
|
|
54 |
"""
|
55 |
model = ColPali.from_pretrained(
|
56 |
self.model_name,
|
57 |
+
torch_dtype=torch.bfloat16, # Note that the embeddings created during feed were float32 -> binarized, yet setting this seem to produce the most similar results both locally (mps) and HF (Cuda)
|
58 |
device_map=self.device,
|
59 |
).eval()
|
60 |
|
|
|
257 |
)
|
258 |
return bool(pattern.match(token))
|
259 |
|
260 |
+
@lru_cache(maxsize=128)
|
261 |
def get_query_embeddings_and_token_map(
|
262 |
self, query: str
|
263 |
) -> Tuple[torch.Tensor, dict]:
|
backend/vespa_app.py
CHANGED
@@ -9,6 +9,7 @@ from vespa.application import Vespa
|
|
9 |
from vespa.io import VespaQueryResponse
|
10 |
from .colpali import SimMapGenerator
|
11 |
import backend.stopwords
|
|
|
12 |
|
13 |
|
14 |
class VespaQueryClient:
|
@@ -16,14 +17,15 @@ class VespaQueryClient:
|
|
16 |
VESPA_SCHEMA_NAME = "pdf_page"
|
17 |
SELECT_FIELDS = "id,title,url,blur_image,page_number,snippet,text"
|
18 |
|
19 |
-
def __init__(self):
|
20 |
"""
|
21 |
Initialize the VespaQueryClient by loading environment variables and establishing a connection to the Vespa application.
|
22 |
"""
|
23 |
load_dotenv()
|
|
|
24 |
|
25 |
if os.environ.get("USE_MTLS") == "true":
|
26 |
-
|
27 |
mtls_key = os.environ.get("VESPA_CLOUD_MTLS_KEY")
|
28 |
mtls_cert = os.environ.get("VESPA_CLOUD_MTLS_CERT")
|
29 |
|
@@ -52,7 +54,7 @@ class VespaQueryClient:
|
|
52 |
url=self.vespa_app_url, key=mtls_key_path, cert=mtls_cert_path
|
53 |
)
|
54 |
else:
|
55 |
-
|
56 |
self.vespa_app_url = os.environ.get("VESPA_APP_TOKEN_URL")
|
57 |
if not self.vespa_app_url:
|
58 |
raise ValueError(
|
@@ -73,7 +75,7 @@ class VespaQueryClient:
|
|
73 |
)
|
74 |
|
75 |
self.app.wait_for_application_up()
|
76 |
-
|
77 |
|
78 |
def get_fields(self, sim_map: bool = False):
|
79 |
if not sim_map:
|
@@ -99,7 +101,7 @@ class VespaQueryClient:
|
|
99 |
query_time = round(query_time, 2)
|
100 |
count = response.json.get("root", {}).get("fields", {}).get("totalCount", 0)
|
101 |
result_text = f"Query text: '{query}', query time {query_time}s, count={count}, top results:\n"
|
102 |
-
|
103 |
return response.json
|
104 |
|
105 |
async def query_vespa_default(
|
@@ -143,7 +145,7 @@ class VespaQueryClient:
|
|
143 |
)
|
144 |
assert response.is_successful(), response.json
|
145 |
stop = time.perf_counter()
|
146 |
-
|
147 |
f"Query time + data transfer took: {stop - start} s, Vespa reported searchtime was "
|
148 |
f"{response.json.get('timing', {}).get('searchtime', -1)} s"
|
149 |
)
|
@@ -190,7 +192,7 @@ class VespaQueryClient:
|
|
190 |
)
|
191 |
assert response.is_successful(), response.json
|
192 |
stop = time.perf_counter()
|
193 |
-
|
194 |
f"Query time + data transfer took: {stop - start} s, Vespa reported searchtime was "
|
195 |
f"{response.json.get('timing', {}).get('searchtime', -1)} s"
|
196 |
)
|
@@ -215,7 +217,7 @@ class VespaQueryClient:
|
|
215 |
)
|
216 |
binary_query_embeddings[key] = binary_vector
|
217 |
if len(binary_query_embeddings) >= self.MAX_QUERY_TERMS:
|
218 |
-
|
219 |
f"Warning: Query has more than {self.MAX_QUERY_TERMS} terms. Truncating."
|
220 |
)
|
221 |
break
|
@@ -292,12 +294,11 @@ class VespaQueryClient:
|
|
292 |
result = await self.query_vespa_bm25(query, q_embs, sim_map=sim_map)
|
293 |
else:
|
294 |
raise ValueError(f"Unsupported ranking: {rank_method}")
|
295 |
-
# Print score, title id, and text of the results
|
296 |
if "root" not in result or "children" not in result["root"]:
|
297 |
result["root"] = {"children": []}
|
298 |
return result
|
299 |
for single_result in result["root"]["children"]:
|
300 |
-
|
301 |
return result
|
302 |
|
303 |
def get_sim_maps_from_query(
|
@@ -349,7 +350,7 @@ class VespaQueryClient:
|
|
349 |
)
|
350 |
assert response.is_successful(), response.json
|
351 |
stop = time.perf_counter()
|
352 |
-
|
353 |
f"Getting image from Vespa took: {stop - start} s, Vespa reported searchtime was "
|
354 |
f"{response.json.get('timing', {}).get('searchtime', -1)} s"
|
355 |
)
|
@@ -386,7 +387,7 @@ class VespaQueryClient:
|
|
386 |
)
|
387 |
assert response.is_successful(), response.json
|
388 |
stop = time.perf_counter()
|
389 |
-
|
390 |
f"Getting suggestions from Vespa took: {stop - start} s, Vespa reported searchtime was "
|
391 |
f"{response.json.get('timing', {}).get('searchtime', -1)} s"
|
392 |
)
|
|
|
9 |
from vespa.io import VespaQueryResponse
|
10 |
from .colpali import SimMapGenerator
|
11 |
import backend.stopwords
|
12 |
+
import logging
|
13 |
|
14 |
|
15 |
class VespaQueryClient:
|
|
|
17 |
VESPA_SCHEMA_NAME = "pdf_page"
|
18 |
SELECT_FIELDS = "id,title,url,blur_image,page_number,snippet,text"
|
19 |
|
20 |
+
def __init__(self, logger: logging.Logger):
|
21 |
"""
|
22 |
Initialize the VespaQueryClient by loading environment variables and establishing a connection to the Vespa application.
|
23 |
"""
|
24 |
load_dotenv()
|
25 |
+
self.logger = logger
|
26 |
|
27 |
if os.environ.get("USE_MTLS") == "true":
|
28 |
+
self.logger.info("Connected using mTLS")
|
29 |
mtls_key = os.environ.get("VESPA_CLOUD_MTLS_KEY")
|
30 |
mtls_cert = os.environ.get("VESPA_CLOUD_MTLS_CERT")
|
31 |
|
|
|
54 |
url=self.vespa_app_url, key=mtls_key_path, cert=mtls_cert_path
|
55 |
)
|
56 |
else:
|
57 |
+
self.logger.info("Connected using token")
|
58 |
self.vespa_app_url = os.environ.get("VESPA_APP_TOKEN_URL")
|
59 |
if not self.vespa_app_url:
|
60 |
raise ValueError(
|
|
|
75 |
)
|
76 |
|
77 |
self.app.wait_for_application_up()
|
78 |
+
self.logger.info(f"Connected to Vespa at {self.vespa_app_url}")
|
79 |
|
80 |
def get_fields(self, sim_map: bool = False):
|
81 |
if not sim_map:
|
|
|
101 |
query_time = round(query_time, 2)
|
102 |
count = response.json.get("root", {}).get("fields", {}).get("totalCount", 0)
|
103 |
result_text = f"Query text: '{query}', query time {query_time}s, count={count}, top results:\n"
|
104 |
+
self.logger.debug(result_text)
|
105 |
return response.json
|
106 |
|
107 |
async def query_vespa_default(
|
|
|
145 |
)
|
146 |
assert response.is_successful(), response.json
|
147 |
stop = time.perf_counter()
|
148 |
+
self.logger.debug(
|
149 |
f"Query time + data transfer took: {stop - start} s, Vespa reported searchtime was "
|
150 |
f"{response.json.get('timing', {}).get('searchtime', -1)} s"
|
151 |
)
|
|
|
192 |
)
|
193 |
assert response.is_successful(), response.json
|
194 |
stop = time.perf_counter()
|
195 |
+
self.logger.debug(
|
196 |
f"Query time + data transfer took: {stop - start} s, Vespa reported searchtime was "
|
197 |
f"{response.json.get('timing', {}).get('searchtime', -1)} s"
|
198 |
)
|
|
|
217 |
)
|
218 |
binary_query_embeddings[key] = binary_vector
|
219 |
if len(binary_query_embeddings) >= self.MAX_QUERY_TERMS:
|
220 |
+
self.logger.warning(
|
221 |
f"Warning: Query has more than {self.MAX_QUERY_TERMS} terms. Truncating."
|
222 |
)
|
223 |
break
|
|
|
294 |
result = await self.query_vespa_bm25(query, q_embs, sim_map=sim_map)
|
295 |
else:
|
296 |
raise ValueError(f"Unsupported ranking: {rank_method}")
|
|
|
297 |
if "root" not in result or "children" not in result["root"]:
|
298 |
result["root"] = {"children": []}
|
299 |
return result
|
300 |
for single_result in result["root"]["children"]:
|
301 |
+
self.logger.debug(single_result["fields"].keys())
|
302 |
return result
|
303 |
|
304 |
def get_sim_maps_from_query(
|
|
|
350 |
)
|
351 |
assert response.is_successful(), response.json
|
352 |
stop = time.perf_counter()
|
353 |
+
self.logger.debug(
|
354 |
f"Getting image from Vespa took: {stop - start} s, Vespa reported searchtime was "
|
355 |
f"{response.json.get('timing', {}).get('searchtime', -1)} s"
|
356 |
)
|
|
|
387 |
)
|
388 |
assert response.is_successful(), response.json
|
389 |
stop = time.perf_counter()
|
390 |
+
self.logger.debug(
|
391 |
f"Getting suggestions from Vespa took: {stop - start} s, Vespa reported searchtime was "
|
392 |
f"{response.json.get('timing', {}).get('searchtime', -1)} s"
|
393 |
)
|
frontend/app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from typing import Optional
|
2 |
from urllib.parse import quote_plus
|
3 |
|
4 |
-
from fasthtml.components import H1, H2, H3, Br, Div, Form, Img, NotStr, P, Span
|
5 |
from fasthtml.xtend import A, Script
|
6 |
from lucide_fasthtml import Lucide
|
7 |
from shad4fast import Badge, Button, Input, Label, RadioGroup, RadioGroupItem, Separator
|
@@ -137,6 +137,19 @@ dynamic_elements_scrollbars = Script(
|
|
137 |
"""
|
138 |
)
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
def SearchBox(with_border=False, query_value="", ranking_value="nn+colpali"):
|
142 |
grid_cls = "grid gap-2 items-center p-3 bg-muted w-full"
|
@@ -183,6 +196,7 @@ def SearchBox(with_border=False, query_value="", ranking_value="nn+colpali"):
|
|
183 |
name="ranking",
|
184 |
default_value=ranking_value,
|
185 |
cls="grid-flow-col gap-x-5 text-muted-foreground",
|
|
|
186 |
),
|
187 |
cls="grid grid-flow-col items-center gap-x-3 border border-input px-3 rounded-sm",
|
188 |
),
|
@@ -197,9 +211,10 @@ def SearchBox(with_border=False, query_value="", ranking_value="nn+colpali"):
|
|
197 |
),
|
198 |
check_input_script,
|
199 |
autocomplete_script,
|
|
|
200 |
action=f"/search?query={quote_plus(query_value)}&ranking={quote_plus(ranking_value)}",
|
201 |
method="GET",
|
202 |
-
hx_get=
|
203 |
hx_trigger="load",
|
204 |
hx_target="#search-results",
|
205 |
hx_swap="outerHTML",
|
@@ -310,9 +325,6 @@ def AboutThisDemo():
|
|
310 |
def Search(request, search_results=[]):
|
311 |
query_value = request.query_params.get("query", "").strip()
|
312 |
ranking_value = request.query_params.get("ranking", "nn+colpali")
|
313 |
-
print(
|
314 |
-
f"Search: Fetching results for query: {query_value}, ranking: {ranking_value}"
|
315 |
-
)
|
316 |
return Div(
|
317 |
Div(
|
318 |
Div(
|
@@ -371,8 +383,13 @@ def SimMapButtonPoll(query_id, idx, token, token_idx):
|
|
371 |
def SearchInfo(search_time, total_count):
|
372 |
return (
|
373 |
Div(
|
374 |
-
|
375 |
-
|
|
|
|
|
|
|
|
|
|
|
376 |
),
|
377 |
cls="grid bg-background border-t text-sm text-center p-3",
|
378 |
),
|
@@ -381,7 +398,8 @@ def SearchInfo(search_time, total_count):
|
|
381 |
|
382 |
def SearchResult(
|
383 |
results: list,
|
384 |
-
|
|
|
385 |
search_time: float = 0,
|
386 |
total_count: int = 0,
|
387 |
):
|
@@ -516,7 +534,7 @@ def SearchResult(
|
|
516 |
Div(
|
517 |
A(
|
518 |
Lucide(icon="external-link", size="18"),
|
519 |
-
f"PDF Source (Page {fields['page_number']})",
|
520 |
href=f"{fields['url']}#page={fields['page_number'] + 1}",
|
521 |
target="_blank",
|
522 |
cls="flex items-center gap-1.5 font-mono bold text-sm",
|
@@ -584,16 +602,13 @@ def SearchResult(
|
|
584 |
return [
|
585 |
Div(
|
586 |
SearchInfo(search_time, total_count),
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
,
|
597 |
Div(
|
598 |
ChatResult(query_id=query_id, query=query, doc_ids=doc_ids),
|
599 |
hx_swap_oob="true",
|
|
|
1 |
from typing import Optional
|
2 |
from urllib.parse import quote_plus
|
3 |
|
4 |
+
from fasthtml.components import H1, H2, H3, Br, Div, Form, Img, NotStr, P, Span, Strong
|
5 |
from fasthtml.xtend import A, Script
|
6 |
from lucide_fasthtml import Lucide
|
7 |
from shad4fast import Badge, Button, Input, Label, RadioGroup, RadioGroupItem, Separator
|
|
|
137 |
"""
|
138 |
)
|
139 |
|
140 |
+
submit_form_on_radio_change = Script(
|
141 |
+
"""
|
142 |
+
document.addEventListener('click', function (e) {
|
143 |
+
// if target has data-ref="radio-item" and type is button
|
144 |
+
if (e.target.getAttribute('data-ref') === 'radio-item' && e.target.type === 'button') {
|
145 |
+
console.log('Radio button clicked');
|
146 |
+
const form = e.target.closest('form');
|
147 |
+
form.submit();
|
148 |
+
}
|
149 |
+
});
|
150 |
+
"""
|
151 |
+
)
|
152 |
+
|
153 |
|
154 |
def SearchBox(with_border=False, query_value="", ranking_value="nn+colpali"):
|
155 |
grid_cls = "grid gap-2 items-center p-3 bg-muted w-full"
|
|
|
196 |
name="ranking",
|
197 |
default_value=ranking_value,
|
198 |
cls="grid-flow-col gap-x-5 text-muted-foreground",
|
199 |
+
# Submit form when radio button is clicked
|
200 |
),
|
201 |
cls="grid grid-flow-col items-center gap-x-3 border border-input px-3 rounded-sm",
|
202 |
),
|
|
|
211 |
),
|
212 |
check_input_script,
|
213 |
autocomplete_script,
|
214 |
+
submit_form_on_radio_change,
|
215 |
action=f"/search?query={quote_plus(query_value)}&ranking={quote_plus(ranking_value)}",
|
216 |
method="GET",
|
217 |
+
hx_get="/fetch_results", # As the component is a form, input components query and ranking are sent as query parameters automatically, see https://htmx.org/docs/#parameters
|
218 |
hx_trigger="load",
|
219 |
hx_target="#search-results",
|
220 |
hx_swap="outerHTML",
|
|
|
325 |
def Search(request, search_results=[]):
|
326 |
query_value = request.query_params.get("query", "").strip()
|
327 |
ranking_value = request.query_params.get("ranking", "nn+colpali")
|
|
|
|
|
|
|
328 |
return Div(
|
329 |
Div(
|
330 |
Div(
|
|
|
383 |
def SearchInfo(search_time, total_count):
|
384 |
return (
|
385 |
Div(
|
386 |
+
Span(
|
387 |
+
"Retrieved ",
|
388 |
+
Strong(total_count),
|
389 |
+
Span(" results"),
|
390 |
+
Span(" in "),
|
391 |
+
Strong(f"{search_time:.3f}"), # 3 significant digits
|
392 |
+
Span(" seconds."),
|
393 |
),
|
394 |
cls="grid bg-background border-t text-sm text-center p-3",
|
395 |
),
|
|
|
398 |
|
399 |
def SearchResult(
|
400 |
results: list,
|
401 |
+
query: str,
|
402 |
+
query_id: Optional[str] = None,
|
403 |
search_time: float = 0,
|
404 |
total_count: int = 0,
|
405 |
):
|
|
|
534 |
Div(
|
535 |
A(
|
536 |
Lucide(icon="external-link", size="18"),
|
537 |
+
f"PDF Source (Page {fields['page_number'] + 1})",
|
538 |
href=f"{fields['url']}#page={fields['page_number'] + 1}",
|
539 |
target="_blank",
|
540 |
cls="flex items-center gap-1.5 font-mono bold text-sm",
|
|
|
602 |
return [
|
603 |
Div(
|
604 |
SearchInfo(search_time, total_count),
|
605 |
+
*result_items,
|
606 |
+
image_swapping,
|
607 |
+
toggle_text_content,
|
608 |
+
dynamic_elements_scrollbars,
|
609 |
+
id="search-results",
|
610 |
+
cls="grid grid-cols-1 gap-px bg-border min-h-0",
|
611 |
+
),
|
|
|
|
|
|
|
612 |
Div(
|
613 |
ChatResult(query_id=query_id, query=query, doc_ids=doc_ids),
|
614 |
hx_swap_oob="true",
|
main.py
CHANGED
@@ -3,6 +3,8 @@ import base64
|
|
3 |
import os
|
4 |
import time
|
5 |
import uuid
|
|
|
|
|
6 |
from concurrent.futures import ThreadPoolExecutor
|
7 |
from pathlib import Path
|
8 |
|
@@ -68,6 +70,20 @@ awesomplete_js = Script(
|
|
68 |
)
|
69 |
sselink = Script(src="https://unpkg.com/htmx-ext-sse@2.2.1/sse.js")
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
app, rt = fast_app(
|
72 |
htmlkw={"cls": "grid h-full"},
|
73 |
pico=False,
|
@@ -83,7 +99,7 @@ app, rt = fast_app(
|
|
83 |
ShadHead(tw_cdn=False, theme_handle=True),
|
84 |
),
|
85 |
)
|
86 |
-
vespa_app: Vespa = VespaQueryClient()
|
87 |
thread_pool = ThreadPoolExecutor()
|
88 |
# Gemini config
|
89 |
|
@@ -107,7 +123,7 @@ os.makedirs(SIM_MAP_DIR, exist_ok=True)
|
|
107 |
|
108 |
@app.on_event("startup")
|
109 |
def load_model_on_startup():
|
110 |
-
app.sim_map_generator = SimMapGenerator()
|
111 |
return
|
112 |
|
113 |
|
@@ -141,7 +157,7 @@ def get():
|
|
141 |
|
142 |
@rt("/search")
|
143 |
def get(request, query: str = "", ranking: str = "nn+colpali"):
|
144 |
-
|
145 |
|
146 |
# Always render the SearchBox first
|
147 |
if not query:
|
@@ -180,12 +196,16 @@ async def get(session, request, query: str, ranking: str):
|
|
180 |
|
181 |
# Get the hash of the query and ranking value
|
182 |
query_id = generate_query_id(query, ranking)
|
183 |
-
|
184 |
# Run the embedding and query against Vespa app
|
185 |
-
|
186 |
q_embs, idx_to_token = app.sim_map_generator.get_query_embeddings_and_token_map(
|
187 |
query
|
188 |
)
|
|
|
|
|
|
|
|
|
189 |
|
190 |
start = time.perf_counter()
|
191 |
# Fetch real search results from Vespa
|
@@ -196,8 +216,8 @@ async def get(session, request, query: str, ranking: str):
|
|
196 |
idx_to_token=idx_to_token,
|
197 |
)
|
198 |
end = time.perf_counter()
|
199 |
-
|
200 |
-
f"Search results fetched in {end - start:.2f} seconds
|
201 |
)
|
202 |
search_time = result["timing"]["searchtime"]
|
203 |
total_count = result["root"]["fields"]["totalCount"]
|
@@ -228,7 +248,7 @@ async def poll_vespa_keepalive():
|
|
228 |
while True:
|
229 |
await asyncio.sleep(5)
|
230 |
await vespa_app.keepalive()
|
231 |
-
|
232 |
|
233 |
|
234 |
@threaded
|
@@ -252,7 +272,7 @@ def get_and_store_sim_maps(
|
|
252 |
):
|
253 |
time.sleep(0.2)
|
254 |
if not all([os.path.exists(img_path) for img_path in img_paths]):
|
255 |
-
|
256 |
return False
|
257 |
sim_map_generator = app.sim_map_generator.gen_similarity_maps(
|
258 |
query=query,
|
@@ -264,7 +284,7 @@ def get_and_store_sim_maps(
|
|
264 |
for idx, token, token_idx, blended_img_base64 in sim_map_generator:
|
265 |
with open(SIM_MAP_DIR / f"{query_id}_{idx}_{token_idx}.png", "wb") as f:
|
266 |
f.write(base64.b64decode(blended_img_base64))
|
267 |
-
|
268 |
f"Sim map saved to disk for query_id: {query_id}, idx: {idx}, token: {token}"
|
269 |
)
|
270 |
return True
|
@@ -279,7 +299,9 @@ async def get_sim_map(query_id: str, idx: int, token: str, token_idx: int):
|
|
279 |
"""
|
280 |
sim_map_path = SIM_MAP_DIR / f"{query_id}_{idx}_{token_idx}.png"
|
281 |
if not os.path.exists(sim_map_path):
|
282 |
-
|
|
|
|
|
283 |
return SimMapButtonPoll(
|
284 |
query_id=query_id, idx=idx, token=token, token_idx=token_idx
|
285 |
)
|
@@ -304,7 +326,7 @@ async def full_image(doc_id: str):
|
|
304 |
# image data is base 64 encoded string. Save it to disk as jpg.
|
305 |
with open(img_path, "wb") as f:
|
306 |
f.write(base64.b64decode(image_data))
|
307 |
-
|
308 |
else:
|
309 |
with open(img_path, "rb") as f:
|
310 |
image_data = base64.b64encode(f.read()).decode("utf-8")
|
@@ -330,7 +352,7 @@ async def get_suggestions(query: str = ""):
|
|
330 |
|
331 |
async def message_generator(query_id: str, query: str, doc_ids: list):
|
332 |
"""Generator function to yield SSE messages for chat response"""
|
333 |
-
images =
|
334 |
num_images = 3 # Number of images before firing chat request
|
335 |
max_wait = 10 # seconds
|
336 |
start_time = time.time()
|
@@ -339,21 +361,22 @@ async def message_generator(query_id: str, query: str, doc_ids: list):
|
|
339 |
len(images) < min(num_images, len(doc_ids))
|
340 |
and time.time() - start_time < max_wait
|
341 |
):
|
|
|
342 |
for idx in range(num_images):
|
343 |
image_filename = IMG_DIR / f"{doc_ids[idx]}.jpg"
|
344 |
if not os.path.exists(image_filename):
|
345 |
-
|
346 |
f"Message generator: Full image not ready for query_id: {query_id}, idx: {idx}"
|
347 |
)
|
348 |
continue
|
349 |
else:
|
350 |
-
|
351 |
f"Message generator: image ready for query_id: {query_id}, idx: {idx}"
|
352 |
)
|
353 |
-
images
|
354 |
-
|
|
|
355 |
|
356 |
-
images = list(images.values())
|
357 |
# yield message with number of images ready
|
358 |
yield f"event: message\ndata: Generating response based on {len(images)} images...\n\n"
|
359 |
if not images:
|
@@ -391,7 +414,6 @@ def get():
|
|
391 |
|
392 |
|
393 |
if __name__ == "__main__":
|
394 |
-
# ModelManager.get_instance() # Initialize once at startup
|
395 |
HOT_RELOAD = os.getenv("HOT_RELOAD", "False").lower() == "true"
|
396 |
-
|
397 |
serve(port=7860, reload=HOT_RELOAD)
|
|
|
3 |
import os
|
4 |
import time
|
5 |
import uuid
|
6 |
+
import logging
|
7 |
+
import sys
|
8 |
from concurrent.futures import ThreadPoolExecutor
|
9 |
from pathlib import Path
|
10 |
|
|
|
70 |
)
|
71 |
sselink = Script(src="https://unpkg.com/htmx-ext-sse@2.2.1/sse.js")
|
72 |
|
73 |
+
# Get log level from environment variable, default to INFO
|
74 |
+
LOG_LEVEL = os.getenv("LOG_LEVEL", "INFO").upper()
|
75 |
+
# Configure logger
|
76 |
+
logger = logging.getLogger("vespa_app")
|
77 |
+
handler = logging.StreamHandler(sys.stdout)
|
78 |
+
handler.setFormatter(
|
79 |
+
logging.Formatter(
|
80 |
+
"%(levelname)s: \t %(asctime)s \t %(message)s",
|
81 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
82 |
+
)
|
83 |
+
)
|
84 |
+
logger.addHandler(handler)
|
85 |
+
logger.setLevel(getattr(logging, LOG_LEVEL))
|
86 |
+
|
87 |
app, rt = fast_app(
|
88 |
htmlkw={"cls": "grid h-full"},
|
89 |
pico=False,
|
|
|
99 |
ShadHead(tw_cdn=False, theme_handle=True),
|
100 |
),
|
101 |
)
|
102 |
+
vespa_app: Vespa = VespaQueryClient(logger=logger)
|
103 |
thread_pool = ThreadPoolExecutor()
|
104 |
# Gemini config
|
105 |
|
|
|
123 |
|
124 |
@app.on_event("startup")
|
125 |
def load_model_on_startup():
|
126 |
+
app.sim_map_generator = SimMapGenerator(logger=logger)
|
127 |
return
|
128 |
|
129 |
|
|
|
157 |
|
158 |
@rt("/search")
|
159 |
def get(request, query: str = "", ranking: str = "nn+colpali"):
|
160 |
+
logger.info(f"/search: Fetching results for query: {query}, ranking: {ranking}")
|
161 |
|
162 |
# Always render the SearchBox first
|
163 |
if not query:
|
|
|
196 |
|
197 |
# Get the hash of the query and ranking value
|
198 |
query_id = generate_query_id(query, ranking)
|
199 |
+
logger.info(f"Query id in /fetch_results: {query_id}")
|
200 |
# Run the embedding and query against Vespa app
|
201 |
+
start_inference = time.perf_counter()
|
202 |
q_embs, idx_to_token = app.sim_map_generator.get_query_embeddings_and_token_map(
|
203 |
query
|
204 |
)
|
205 |
+
end_inference = time.perf_counter()
|
206 |
+
logger.info(
|
207 |
+
f"Inference time for query_id: {query_id} \t {end_inference - start_inference:.2f} seconds"
|
208 |
+
)
|
209 |
|
210 |
start = time.perf_counter()
|
211 |
# Fetch real search results from Vespa
|
|
|
216 |
idx_to_token=idx_to_token,
|
217 |
)
|
218 |
end = time.perf_counter()
|
219 |
+
logger.info(
|
220 |
+
f"Search results fetched in {end - start:.2f} seconds. Vespa search time: {result['timing']['searchtime']}"
|
221 |
)
|
222 |
search_time = result["timing"]["searchtime"]
|
223 |
total_count = result["root"]["fields"]["totalCount"]
|
|
|
248 |
while True:
|
249 |
await asyncio.sleep(5)
|
250 |
await vespa_app.keepalive()
|
251 |
+
logger.debug(f"Vespa keepalive: {time.time()}")
|
252 |
|
253 |
|
254 |
@threaded
|
|
|
272 |
):
|
273 |
time.sleep(0.2)
|
274 |
if not all([os.path.exists(img_path) for img_path in img_paths]):
|
275 |
+
logger.warning(f"Images not ready in 5 seconds for query_id: {query_id}")
|
276 |
return False
|
277 |
sim_map_generator = app.sim_map_generator.gen_similarity_maps(
|
278 |
query=query,
|
|
|
284 |
for idx, token, token_idx, blended_img_base64 in sim_map_generator:
|
285 |
with open(SIM_MAP_DIR / f"{query_id}_{idx}_{token_idx}.png", "wb") as f:
|
286 |
f.write(base64.b64decode(blended_img_base64))
|
287 |
+
logger.debug(
|
288 |
f"Sim map saved to disk for query_id: {query_id}, idx: {idx}, token: {token}"
|
289 |
)
|
290 |
return True
|
|
|
299 |
"""
|
300 |
sim_map_path = SIM_MAP_DIR / f"{query_id}_{idx}_{token_idx}.png"
|
301 |
if not os.path.exists(sim_map_path):
|
302 |
+
logger.debug(
|
303 |
+
f"Sim map not ready for query_id: {query_id}, idx: {idx}, token: {token}"
|
304 |
+
)
|
305 |
return SimMapButtonPoll(
|
306 |
query_id=query_id, idx=idx, token=token, token_idx=token_idx
|
307 |
)
|
|
|
326 |
# image data is base 64 encoded string. Save it to disk as jpg.
|
327 |
with open(img_path, "wb") as f:
|
328 |
f.write(base64.b64decode(image_data))
|
329 |
+
logger.debug(f"Full image saved to disk for doc_id: {doc_id}")
|
330 |
else:
|
331 |
with open(img_path, "rb") as f:
|
332 |
image_data = base64.b64encode(f.read()).decode("utf-8")
|
|
|
352 |
|
353 |
async def message_generator(query_id: str, query: str, doc_ids: list):
|
354 |
"""Generator function to yield SSE messages for chat response"""
|
355 |
+
images = []
|
356 |
num_images = 3 # Number of images before firing chat request
|
357 |
max_wait = 10 # seconds
|
358 |
start_time = time.time()
|
|
|
361 |
len(images) < min(num_images, len(doc_ids))
|
362 |
and time.time() - start_time < max_wait
|
363 |
):
|
364 |
+
images = []
|
365 |
for idx in range(num_images):
|
366 |
image_filename = IMG_DIR / f"{doc_ids[idx]}.jpg"
|
367 |
if not os.path.exists(image_filename):
|
368 |
+
logger.debug(
|
369 |
f"Message generator: Full image not ready for query_id: {query_id}, idx: {idx}"
|
370 |
)
|
371 |
continue
|
372 |
else:
|
373 |
+
logger.debug(
|
374 |
f"Message generator: image ready for query_id: {query_id}, idx: {idx}"
|
375 |
)
|
376 |
+
images.append(Image.open(image_filename))
|
377 |
+
if len(images) < num_images:
|
378 |
+
await asyncio.sleep(0.2)
|
379 |
|
|
|
380 |
# yield message with number of images ready
|
381 |
yield f"event: message\ndata: Generating response based on {len(images)} images...\n\n"
|
382 |
if not images:
|
|
|
414 |
|
415 |
|
416 |
if __name__ == "__main__":
|
|
|
417 |
HOT_RELOAD = os.getenv("HOT_RELOAD", "False").lower() == "true"
|
418 |
+
logger.info(f"Starting app with hot reload: {HOT_RELOAD}")
|
419 |
serve(port=7860, reload=HOT_RELOAD)
|