File size: 17,602 Bytes
faecf2c fe61012 faecf2c c5048d8 fe61012 faecf2c 57f491f faecf2c fe61012 faecf2c fe61012 faecf2c fe61012 faecf2c fe61012 faecf2c fe61012 faecf2c fe61012 faecf2c 57f491f faecf2c 57f491f fe61012 faecf2c 57f491f faecf2c fe61012 faecf2c fe61012 faecf2c 57f491f faecf2c 0530756 57f491f faecf2c 0530756 57f491f faecf2c 57f491f 0530756 57f491f 0530756 faecf2c fe61012 faecf2c 57f491f 80f6abb 57f491f 80f6abb 57f491f fe61012 faecf2c fe61012 c9b69d1 faecf2c 80f6abb faecf2c 80f6abb faecf2c 57f491f faecf2c 80f6abb faecf2c c5048d8 faecf2c 80f6abb faecf2c 80f6abb 57f491f faecf2c fe61012 faecf2c 57f491f faecf2c fe61012 c9b69d1 faecf2c 57f491f fe61012 57f491f faecf2c 57f491f fe61012 c9b69d1 faecf2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
from datetime import datetime, timedelta
import requests
import locale
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
locale.setlocale(locale.LC_MONETARY, 'en_IN')
# def create_pie_chart(schemes):
# labels = list(schemes.keys())
# values = list(schemes.values())
# fig = go.Figure(data=[go.Pie(labels=labels, values=values)])
# fig.update_layout(title_text="Scheme Weightages")
# return fig
def get_nav_data(scheme_code):
url = f"https://api.mfapi.in/mf/{scheme_code}"
response = requests.get(url)
data = response.json()
df = pd.DataFrame(data['data'])
df['date'] = pd.to_datetime(df['date'], format='%d-%m-%Y')
df['nav'] = df['nav'].astype(float)
df = df.sort_values('date')
inception_date = df['date'].min()
return df, inception_date
def calculate_sip_returns(nav_data, sip_amount, upfront_amount, stepup, start_date, end_date, SIP_Date):
start_date = pd.Timestamp(start_date)
end_date = pd.Timestamp(end_date)
nav_data_filtered = nav_data[(nav_data['date'] >= start_date) & (nav_data['date'] <= end_date)].copy()
nav_data_filtered['date'] = pd.to_datetime(nav_data_filtered['date'])
if SIP_Date == 'start':
last_dates = nav_data_filtered.groupby([nav_data_filtered['date'].dt.year, nav_data_filtered['date'].dt.month]).head(1)
elif SIP_Date == 'end':
last_dates = nav_data_filtered.groupby([nav_data_filtered['date'].dt.year, nav_data_filtered['date'].dt.month]).tail(1)
else:
last_dates = nav_data_filtered.groupby([nav_data_filtered['date'].dt.year, nav_data_filtered['date'].dt.month]).apply(lambda x: x.iloc[len(x)//2])
total_investment = upfront_amount
current_sip_amount = sip_amount
# do calculation for upfront investment
units_bought = upfront_amount / nav_data_filtered.iloc[0]['nav']
units_accumulated = units_bought
previous_year = start_date.year
for _, row in last_dates.iloc[:-1].iterrows():
# Check if a year has passed and increase SIP amount accordingly
if row['date'].year > previous_year:
current_sip_amount += current_sip_amount * (stepup / 100)
previous_year = row['date'].year
units_bought = current_sip_amount / row['nav']
units_accumulated += units_bought
total_investment += current_sip_amount
final_value = units_accumulated * last_dates.iloc[-1]['nav']
total_return = (final_value - total_investment) / total_investment * 100
return total_return, final_value, total_investment
def calculate_portfolio_returns(schemes, sip_amount, upfront_amount, stepup, start_date, end_date, SIP_date, schemes_df):
scheme_returns = []
total_investment = 0
final_value = 0
inception_dates = []
for scheme_name, scheme_weight in schemes.items():
scheme_code = schemes_df[schemes_df['schemeName'] == scheme_name]['schemeCode'].values[0]
nav_data, inception_date = get_nav_data(scheme_code)
inception_dates.append((scheme_name, inception_date))
scheme_return, scheme_final_value, scheme_total_investment = calculate_sip_returns(nav_data, sip_amount * scheme_weight / 100, upfront_amount * scheme_weight / 100, stepup, start_date, end_date, SIP_date)
scheme_returns.append((scheme_name, scheme_return,scheme_final_value,scheme_total_investment))
final_value += scheme_final_value
total_investment += scheme_total_investment
portfolio_return = (final_value - total_investment) / total_investment * 100
return portfolio_return, final_value, total_investment, scheme_returns, inception_dates
def update_sip_calculator(*args):
period = args[0]
custom_start_date = args[1]
custom_end_date = args[2]
SIP_Date = args[3]
sip_amount = args[4]
upfront_amount = args[5]
stepup = args[6]
schemes_df = args[7]
schemes = {}
for i in range(8, len(args) - 1, 2): # Adjust range to account for use_inception_date
if args[i] and args[i+1]:
schemes[args[i]] = float(args[i+1])
use_inception_date = args[-1] # Get use_inception_date from the last argument
if not schemes:
return "Please add at least one scheme.", None, None, None
total_weight = sum(schemes.values())
end_date = datetime.now().date()
if use_inception_date:
start_date = datetime.strptime(custom_start_date, "%Y-%m-%d").date()
elif period == "Custom":
if not custom_start_date or not custom_end_date:
return "Please provide both start and end dates for custom period.", None, None, None
start_date = datetime.strptime(custom_start_date, "%Y-%m-%d").date()
end_date = datetime.strptime(custom_end_date, "%Y-%m-%d").date()
elif period == "YTD":
start_date = datetime(end_date.year, 1, 1).date()
elif not period:
return "Please select a period, provide custom dates, or use the inception date.", None, None, None
else:
period_parts = period.split()
if len(period_parts) < 2:
return "Invalid period selected.", None, None, None
if 'year' in period_parts[1]:
years = int(period_parts[0])
start_date = end_date - timedelta(days=years*365)
else:
months = int(period_parts[0])
start_date = end_date - timedelta(days=months*30)
try:
portfolio_return, final_value, total_investment, scheme_returns, inception_dates = calculate_portfolio_returns(schemes, sip_amount, upfront_amount,stepup, start_date, end_date, SIP_Date, schemes_df)
except Exception as e:
return f"Error: {str(e)}", None, None, None
# Check if start_date is before any scheme's inception date
inception_warnings = []
earliest_inception_date = max(inception_date for _, inception_date in inception_dates)
for scheme_name, inception_date in inception_dates:
if start_date < inception_date.date():
inception_warnings.append(f"Warning: {scheme_name} inception date ({inception_date.date()}) is after the chosen start date ({start_date}).")
result = ""
if inception_warnings:
result += "The following warnings were found:\n"
result += "\n".join(inception_warnings) + "\n\n"
result += f"Possible start date for all chosen schemes is: {earliest_inception_date.date()}\n\n"
result += f"Portfolio Absolute return: {portfolio_return:.2f}%\n"
result += f"Total investment: {locale.currency(total_investment,grouping=True)}\n"
result += f"Final value: {locale.currency(final_value,grouping=True)}\n\n"
result += "Individual scheme returns:\n"
for scheme_name, scheme_return, scheme_final_value, scheme_total_investment in scheme_returns:
result += f"---- {scheme_name} ----:\n"
result += f"Return: {scheme_return:.2f}%\n"
result += f"Total investment: {locale.currency(scheme_total_investment,grouping=True)}\n"
result += f"Final value: {locale.currency(scheme_final_value,grouping=True)}\n\n"
# pie_chart = create_pie_chart(schemes)
# return result, pie_chart, final_value, total_investment
return result
def fetch_scheme_data():
url = "https://api.mfapi.in/mf"
response = requests.get(url)
schemes = response.json()
return pd.DataFrame(schemes)
def quick_search_schemes(query, schemes_df):
if not query:
return []
matching_schemes = schemes_df[schemes_df['schemeName'].str.contains(query, case=False, na=False)]
return matching_schemes['schemeName'].tolist()[:40]
def update_scheme_dropdown(query, schemes_df, key_up_data: gr.KeyUpData):
schemes = quick_search_schemes(key_up_data.input_value, schemes_df)
return gr.update(choices=schemes, visible=True)
def update_schemes_list(schemes_list, updated_data):
new_schemes_list = []
for _, row in updated_data.iterrows():
scheme_name = row.get('Scheme Name')
weight = row.get('Weight (%)')
action = row.get('Actions')
if scheme_name and weight is not None and action != '🗑️': # Only keep rows that aren't marked for deletion
try:
weight_float = float(weight)
new_schemes_list.append((scheme_name, weight_float))
except ValueError:
# If weight is not a valid float, skip this row
continue
return new_schemes_list
def update_schemes_table(schemes_list):
df = pd.DataFrame(schemes_list, columns=["Scheme Name", "Weight (%)"])
df["Actions"] = "❌"
# Calculate the sum of weights
total_weight = df["Weight (%)"].sum()
# Add a row for the total
total_row = pd.DataFrame({
"Scheme Name": ["Total"],
"Weight (%)": [total_weight],
"Actions": [""]
})
# Concatenate the original dataframe with the total row
df = pd.concat([df, total_row], ignore_index=True)
# Add a warning if total weight exceeds 100%
if total_weight > 100:
df.loc[df.index[-1], "Actions"] = "⚠️ Exceeds 100%"
return df
def add_scheme_to_list(schemes_list, scheme_name, weight):
if scheme_name and weight:
new_list = schemes_list + [(scheme_name, float(weight))]
return new_list, update_schemes_table(new_list), None, 0
return schemes_list, update_schemes_table(schemes_list), scheme_name, weight
def update_schemes(schemes_list, updated_data):
try:
new_schemes_list = []
for _, row in updated_data.iterrows():
scheme_name = row.get('Scheme Name')
weight = row.get('Weight (%)')
if scheme_name != 'Total' and weight is not None:
try:
weight_float = float(weight)
new_schemes_list.append((scheme_name, weight_float))
except ValueError:
continue
if not new_schemes_list:
return schemes_list, update_schemes_table(schemes_list), "No valid schemes found in the table."
return new_schemes_list, update_schemes_table(new_schemes_list), None
except Exception as e:
error_msg = f"Error updating schemes: {str(e)}"
return schemes_list, update_schemes_table(schemes_list), error_msg
def prepare_inputs(period, custom_start, custom_end, SIP_Date, sip_amount, schemes_list, schemes_df):
inputs = [period, custom_start, custom_end, SIP_Date, sip_amount, schemes_df]
for name, weight in schemes_list:
inputs.extend([name, weight])
return inputs
def handle_row_selection(schemes_list, evt: gr.SelectData, table_data):
if evt.index is not None and len(evt.index) > 1:
column_index = evt.index[1]
if column_index == 2: # "Actions" column
row_index = evt.index[0]
if row_index < len(table_data) - 1: # Ensure we're not trying to delete the total row
# Remove the row
table_data = table_data.drop(row_index).reset_index(drop=True)
# Update the schemes_list
updated_schemes_list = [(row['Scheme Name'], row['Weight (%)']) for _, row in table_data.iterrows() if row['Scheme Name'] != 'Total']
# Recalculate the total
return update_schemes_table(updated_schemes_list), updated_schemes_list
return table_data, schemes_list
def create_ui():
schemes_df = fetch_scheme_data()
with gr.Blocks(js=js_func) as app:
gr.Markdown("# Mutual Fund SIP Returns Calculator")
with gr.Row():
period = gr.Dropdown(choices=["YTD", "1 month","3 months","6 months","1 year", "3 years", "5 years", "7 years", "10 years","15 years","20 years", "Custom"], label="Select Period",value="YTD")
custom_start_date = gr.Textbox(label="Custom Start Date (YYYY-MM-DD)", visible=False)
custom_end_date = gr.Textbox(label="Custom End Date (YYYY-MM-DD)", visible=False)
SIP_Date = gr.Dropdown(label="Monthly SIP Date", choices=["start","middle","end"],value="end")
with gr.Column():
use_inception_date = gr.Checkbox(label="Use Earliest Inception Date", value=False)
inception_date_display = gr.Textbox(label="Earliest Inception Date", interactive=False)
with gr.Row():
sip_amount = gr.Number(label="SIP Amount (₹)")
upfront_amount = gr.Number(label="Upfront Investment (₹)",value=0)
stepup = gr.Number(label="Stepup %",value=0)
schemes_list = gr.State([])
with gr.Row():
scheme_dropdown = gr.Dropdown(label="Select Scheme", choices=[], allow_custom_value=True, interactive=True)
scheme_weight = gr.Slider(minimum=0, maximum=100, step=1, label="Scheme Weight (%)")
add_button = gr.Button("Add Scheme")
schemes_table = gr.Dataframe(
headers=["Scheme Name", "Weight (%)", "Actions"],
datatype=["str", "number", "str"],
col_count=(3, "fixed"),
label="Added Schemes",
type="pandas",
interactive=True
)
update_button = gr.Button("Update Schemes")
error_message = gr.Textbox(label="Error", visible=False)
calculate_button = gr.Button("Calculate Returns")
result = gr.Textbox(label="Results",)
# pie_chart = gr.Plot(label="Scheme Weightages")
# final_value = gr.Number(label="Final Value (₹)", interactive=False)
# total_investment = gr.Number(label="Total Investment (₹)", interactive=False)
def update_custom_date_visibility(period):
return {custom_start_date: gr.update(visible=period=="Custom"),
custom_end_date: gr.update(visible=period=="Custom")}
period.change(update_custom_date_visibility, inputs=[period], outputs=[custom_start_date, custom_end_date])
scheme_dropdown.key_up(
fn=update_scheme_dropdown,
inputs=[scheme_dropdown, gr.State(schemes_df)],
outputs=scheme_dropdown,
queue=False,
show_progress="hidden"
)
add_button.click(add_scheme_to_list,
inputs=[schemes_list, scheme_dropdown, scheme_weight],
outputs=[schemes_list, schemes_table, scheme_dropdown, scheme_weight])
def update_schemes_and_show_error(schemes_list, updated_data):
new_schemes_list, updated_table, error = update_schemes(schemes_list, updated_data)
return (
new_schemes_list,
updated_table,
gr.update(value=error, visible=bool(error))
)
update_button.click(
update_schemes_and_show_error,
inputs=[schemes_list, schemes_table],
outputs=[schemes_list, schemes_table, error_message]
)
schemes_table.select(
handle_row_selection,
inputs=[schemes_list, schemes_table],
outputs=[schemes_table, schemes_list]
)
def get_earliest_inception_date(schemes_list, schemes_df):
inception_dates = []
for scheme_name, _ in schemes_list:
scheme_code = schemes_df[schemes_df['schemeName'] == scheme_name]['schemeCode'].values[0]
_, inception_date = get_nav_data(scheme_code)
inception_dates.append(inception_date)
return max(inception_dates).strftime("%Y-%m-%d") if inception_dates else ""
def update_inception_date(use_inception_date, schemes_list, schemes_df):
if use_inception_date and schemes_list:
earliest_inception_date = get_earliest_inception_date(schemes_list, schemes_df)
return gr.update(value=earliest_inception_date, visible=True)
else:
return gr.update(value="", visible=False)
use_inception_date.change(
update_inception_date,
inputs=[use_inception_date, schemes_list, gr.State(schemes_df)],
outputs=inception_date_display
)
def prepare_inputs_with_inception(period, custom_start, custom_end, SIP_Date, sip_amount, upfront_amount,stepup, schemes_list, schemes_df, use_inception_date, inception_date_display):
inputs = [period, custom_start, custom_end, SIP_Date, sip_amount, upfront_amount, stepup, schemes_df]
for name, weight in schemes_list:
inputs.extend([name, weight])
inputs.append(use_inception_date) # Add use_inception_date to the inputs
if use_inception_date and inception_date_display:
inputs[1] = inception_date_display # Replace custom_start with inception_date_display
return inputs
calculate_button.click(
lambda *args: update_sip_calculator(*prepare_inputs_with_inception(*args)),
inputs=[period, custom_start_date, custom_end_date, SIP_Date, sip_amount,upfront_amount,stepup,schemes_list, gr.State(schemes_df), use_inception_date, inception_date_display],
outputs=[result]
# outputs=[result, final_value, total_investment]
# outputs=[result, pie_chart, final_value, total_investment]
)
return app
app = create_ui()
app.launch() |