File size: 7,141 Bytes
2ad0a56
492def7
2ad0a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492def7
2ad0a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492def7
2ad0a56
492def7
2ad0a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# import libraries and load the model

import random
import requests
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import torch
from transformers import AutoProcessor, Owlv2ForObjectDetection
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD

obj_processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16-ensemble")
obj_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble")

colors = [
    (255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 165, 0), (75, 0, 130),
    (255, 255, 0), (0, 255, 255), (255, 105, 180), (138, 43, 226), (0, 128, 0),
    (0, 128, 128), (255, 20, 147), (64, 224, 208), (128, 0, 128), (70, 130, 180),
    (220, 20, 60), (255, 140, 0), (34, 139, 34), (218, 112, 214), (255, 99, 71),
    (47, 79, 79), (186, 85, 211), (240, 230, 140), (169, 169, 169), (199, 21, 133)
]

def detect_objects(image, objects):

    texts = [objects]
    inputs = obj_processor(text=texts, images=image, return_tensors="pt")

    with torch.no_grad():
        outputs = obj_model(**inputs)

    target_sizes = torch.Tensor([image.size[::-1]])
    results = obj_processor.post_process_object_detection(
        outputs=outputs, threshold=0.2, target_sizes=target_sizes
    )

    i = 0
    text = texts[i]
    boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
    return image, boxes, scores, labels

def annotate_image(image, boxes, scores, labels, objects):
    draw = ImageDraw.Draw(image)
    font = ImageFont.load_default()

    for i, (box, score, label) in enumerate(zip(boxes, scores, labels)):
        box = [round(coord, 2) for coord in box.tolist()]
        color = colors[label % len(colors)]
        draw.rectangle(box, outline=color, width=3)
        draw.text((box[0], box[1]), f"{objects[label]}: {score:.2f}", font=font, fill=color)

    return image


from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from PIL import Image
import requests

#cbt_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
#cbt_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", device_map="cuda")

cbt_model = Qwen2VLForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2-VL-2B-Instruct",
    torch_dtype="auto",
    device_map="auto",
)

cbt_processor = AutoProcessor.from_pretrained(
    "Qwen/Qwen2-VL-2B-Instruct"
)

import random
import time
import gradio as gr

global history
history = [
            {
                "role": "system",
                "content" : [
                    {
                        "type": "image",
                    },
                    {
                        "type": "text",
                        "text": "You are an conversation image recognition chatbot. Communicate with humans using natural language. Recognize the images, have a spatial understanding and answer the questions in a concise manner. Generate the best response for a user query. It must be correct lexically and grammatically.",
                    }
                ]
            }
        ]

with gr.Blocks() as demo:

    with gr.Row():

        with gr.Column(scale=1):

                gr.Markdown("## Upload an Image")
                image_input = gr.Image(type="pil", label="Upload your image here")
                objects_input = gr.Textbox(label="Enter the objects to detect (comma-separated)", placeholder="e.g. 'cat, dog, car'")
                image_output = gr.Image(type="pil", label="Detected Objects")

                def run_object_detection(image, objects):
                    object_list = [obj.strip() for obj in objects.split(",")]
                    image, boxes, scores, labels = detect_objects(image, object_list)
                    annotated_image = annotate_image(image, boxes, scores, labels, object_list)
                    history.append({
                        'role': 'system',
                        'content': [
                            {
                                'type': 'text',
                                'text': f'In the image the objects detected are {labels}'
                            }
                        ]
                    })
                    return annotated_image

                detect_button = gr.Button("Detect Objects")
                detect_button.click(fn=run_object_detection, inputs=[image_input, objects_input], outputs=image_output)

        with gr.Column(scale=2):

                chatbot = gr.Chatbot()
                msg = gr.Textbox(label='Chat with your image', placeholder='Describe the image and highlight the key visual information')
                clear = gr.ClearButton([msg, chatbot])

                def user(message, chat_history):
                    return "", chat_history + [[message, ""]]

                def chat_function(image, chat_history):

                    message = ''

                    if chat_history[-1][0] is not None:
                        message = str(chat_history[-1][0])

                    history.append({
                        "role": "user",
                        "content" : [
                            {
                                "type": "text",
                                "text": message
                            }
                        ]
                    })

                    text_prompt = cbt_processor.apply_chat_template(history, add_generation_prompt=True)

                    inputs = cbt_processor(
                        text = [text_prompt],
                        images = [image],
                        padding = True,
                        return_tensors = "pt"
                    )

                    #inputs = inputs.to("cuda")

                    output_ids = cbt_model.generate(**inputs, max_new_tokens=512)

                    generated_ids = [
                        output_ids[len(input_ids) :]
                        for input_ids, output_ids in zip(inputs.input_ids, output_ids)
                    ]

                    bot_output = cbt_processor.batch_decode(
                        generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
                    )

                    history.append({
                        "role": "assistant",
                        "content" : [
                            {
                                "type": "text",
                                "text": bot_output
                            }
                        ]
                    })

                    bot_output_str = str(bot_output).replace('"', '').replace('[', '').replace(']', '').replace("\n", "<br>")

                    chat_history[-1][1] = ""
                    for character in bot_output_str:
                        chat_history[-1][1] += character
                        time.sleep(0.05)
                        yield chat_history

                msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(chat_function, [image_input, chatbot], [chatbot])
                clear.click(lambda :None, None, chatbot, queue=False)


demo.launch(debug=True)