|
|
|
!pip install torch |
|
import random |
|
import requests |
|
from PIL import Image, ImageDraw, ImageFont |
|
import numpy as np |
|
import torch |
|
from transformers import AutoProcessor, Owlv2ForObjectDetection |
|
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD |
|
|
|
obj_processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16-ensemble") |
|
obj_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble") |
|
|
|
colors = [ |
|
(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 165, 0), (75, 0, 130), |
|
(255, 255, 0), (0, 255, 255), (255, 105, 180), (138, 43, 226), (0, 128, 0), |
|
(0, 128, 128), (255, 20, 147), (64, 224, 208), (128, 0, 128), (70, 130, 180), |
|
(220, 20, 60), (255, 140, 0), (34, 139, 34), (218, 112, 214), (255, 99, 71), |
|
(47, 79, 79), (186, 85, 211), (240, 230, 140), (169, 169, 169), (199, 21, 133) |
|
] |
|
|
|
def detect_objects(image, objects): |
|
|
|
texts = [objects] |
|
inputs = obj_processor(text=texts, images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = obj_model(**inputs) |
|
|
|
target_sizes = torch.Tensor([image.size[::-1]]) |
|
results = obj_processor.post_process_object_detection( |
|
outputs=outputs, threshold=0.2, target_sizes=target_sizes |
|
) |
|
|
|
i = 0 |
|
text = texts[i] |
|
boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"] |
|
return image, boxes, scores, labels |
|
|
|
def annotate_image(image, boxes, scores, labels, objects): |
|
draw = ImageDraw.Draw(image) |
|
font = ImageFont.load_default() |
|
|
|
for i, (box, score, label) in enumerate(zip(boxes, scores, labels)): |
|
box = [round(coord, 2) for coord in box.tolist()] |
|
color = colors[label % len(colors)] |
|
draw.rectangle(box, outline=color, width=3) |
|
draw.text((box[0], box[1]), f"{objects[label]}: {score:.2f}", font=font, fill=color) |
|
|
|
return image |
|
|
|
|
|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from PIL import Image |
|
import requests |
|
|
|
|
|
|
|
|
|
cbt_model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
"Qwen/Qwen2-VL-2B-Instruct", |
|
torch_dtype="auto", |
|
device_map="auto", |
|
) |
|
|
|
cbt_processor = AutoProcessor.from_pretrained( |
|
"Qwen/Qwen2-VL-2B-Instruct" |
|
) |
|
|
|
import random |
|
import time |
|
import gradio as gr |
|
|
|
global history |
|
history = [ |
|
{ |
|
"role": "system", |
|
"content" : [ |
|
{ |
|
"type": "image", |
|
}, |
|
{ |
|
"type": "text", |
|
"text": "You are an conversation image recognition chatbot. Communicate with humans using natural language. Recognize the images, have a spatial understanding and answer the questions in a concise manner. Generate the best response for a user query. It must be correct lexically and grammatically.", |
|
} |
|
] |
|
} |
|
] |
|
|
|
with gr.Blocks() as demo: |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=1): |
|
|
|
gr.Markdown("## Upload an Image") |
|
image_input = gr.Image(type="pil", label="Upload your image here") |
|
objects_input = gr.Textbox(label="Enter the objects to detect (comma-separated)", placeholder="e.g. 'cat, dog, car'") |
|
image_output = gr.Image(type="pil", label="Detected Objects") |
|
|
|
def run_object_detection(image, objects): |
|
object_list = [obj.strip() for obj in objects.split(",")] |
|
image, boxes, scores, labels = detect_objects(image, object_list) |
|
annotated_image = annotate_image(image, boxes, scores, labels, object_list) |
|
history.append({ |
|
'role': 'system', |
|
'content': [ |
|
{ |
|
'type': 'text', |
|
'text': f'In the image the objects detected are {labels}' |
|
} |
|
] |
|
}) |
|
return annotated_image |
|
|
|
detect_button = gr.Button("Detect Objects") |
|
detect_button.click(fn=run_object_detection, inputs=[image_input, objects_input], outputs=image_output) |
|
|
|
with gr.Column(scale=2): |
|
|
|
chatbot = gr.Chatbot() |
|
msg = gr.Textbox() |
|
clear = gr.ClearButton([msg, chatbot]) |
|
|
|
def user(message, chat_history): |
|
return "", chat_history + [[message, ""]] |
|
|
|
def chat_function(image, chat_history): |
|
|
|
message = '' |
|
|
|
if chat_history[-1][0] is not None: |
|
message = str(chat_history[-1][0]) |
|
|
|
history.append({ |
|
"role": "user", |
|
"content" : [ |
|
{ |
|
"type": "text", |
|
"text": message |
|
} |
|
] |
|
}) |
|
|
|
text_prompt = cbt_processor.apply_chat_template(history, add_generation_prompt=True) |
|
|
|
inputs = cbt_processor( |
|
text = [text_prompt], |
|
images = [image], |
|
padding = True, |
|
return_tensors = "pt" |
|
) |
|
|
|
inputs = inputs.to("cuda") |
|
|
|
output_ids = cbt_model.generate(**inputs, max_new_tokens=1024) |
|
|
|
generated_ids = [ |
|
output_ids[len(input_ids) :] |
|
for input_ids, output_ids in zip(inputs.input_ids, output_ids) |
|
] |
|
|
|
bot_output = cbt_processor.batch_decode( |
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True |
|
) |
|
|
|
history.append({ |
|
"role": "assistant", |
|
"content" : [ |
|
{ |
|
"type": "text", |
|
"text": bot_output |
|
} |
|
] |
|
}) |
|
|
|
bot_output_str = str(bot_output).replace('"', '').replace('[', '').replace(']', '').replace("\n", "<br>") |
|
|
|
chat_history[-1][1] = "" |
|
for character in bot_output_str: |
|
chat_history[-1][1] += character |
|
time.sleep(0.05) |
|
yield chat_history |
|
|
|
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(chat_function, [image_input, chatbot], [chatbot]) |
|
clear.click(lambda :None, None, chatbot, queue=False) |
|
|
|
|
|
demo.launch(debug=True) |