Spaces:
Running
Running
File size: 17,410 Bytes
9acc552 3733e70 9acc552 8f8ef33 9acc552 8f8ef33 9acc552 8f8ef33 9acc552 8f8ef33 9acc552 8f8ef33 9acc552 3733e70 9acc552 4b41e60 9acc552 3733e70 9acc552 3733e70 9acc552 3733e70 8f8ef33 4b41e60 3733e70 4b41e60 8f8ef33 3733e70 8f8ef33 3733e70 8f8ef33 9acc552 5f721d1 4b41e60 9acc552 5f721d1 9acc552 5f721d1 8f8ef33 9acc552 4b41e60 9acc552 8f8ef33 9acc552 8f8ef33 9acc552 8f8ef33 4b41e60 9acc552 4b41e60 9acc552 4b41e60 8f8ef33 4b41e60 3733e70 4b41e60 3733e70 4b41e60 3733e70 4b41e60 5f721d1 9acc552 8f8ef33 4b41e60 5f721d1 8f8ef33 5f721d1 8f8ef33 3733e70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
import base64
from io import BytesIO
import os
import sys
import cv2
from matplotlib import pyplot as plt
import numpy as np
import streamlit as st
import torch
import tempfile
from PIL import Image
from torchvision.transforms.functional import to_pil_image
from torchvision import transforms
from torchcam.methods import CAM
from torchcam import methods as torchcam_methods
from torchcam.utils import overlay_mask
import os.path as osp
root_path = osp.abspath(osp.join(__file__, osp.pardir))
sys.path.append(root_path)
from preprocessing.dataset_creation import EyeDentityDatasetCreation
from utils import get_model
@torch.no_grad()
def load_model(model_configs, device="cpu"):
"""Loads the pre-trained model."""
model_path = os.path.join(root_path, model_configs["model_path"])
model_dict = torch.load(model_path, map_location=device)
model = get_model(model_configs=model_configs)
model.load_state_dict(model_dict)
model = model.to(device).eval()
return model
def extract_frames(video_path):
"""Extracts frames from a video file."""
vidcap = cv2.VideoCapture(video_path)
frames = []
success, image = vidcap.read()
while success:
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
frames.append(image_rgb)
success, image = vidcap.read()
vidcap.release()
return frames
def resize_frame(image, max_width=640, max_height=480):
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
original_size = image.size
# Resize the frame similarly to the image resizing logic
if original_size[0] == original_size[1] and original_size[0] >= 256:
max_size = (256, 256)
else:
max_size = list(original_size)
if original_size[0] >= max_width:
max_size[0] = max_width
elif original_size[0] < 64:
max_size[0] = 64
if original_size[1] >= max_height:
max_size[1] = max_height
elif original_size[1] < 32:
max_size[1] = 32
image.thumbnail(max_size)
# image = image.resize(max_size)
return image
def is_image(file_extension):
"""Checks if the file is an image."""
return file_extension.lower() in ["png", "jpeg", "jpg"]
def is_video(file_extension):
"""Checks if the file is a video."""
return file_extension.lower() in ["mp4", "avi", "mov", "mkv", "webm"]
def get_codec_and_extension(file_format):
"""Return codec and file extension based on the format."""
if file_format == "mp4":
return "H264", ".mp4"
elif file_format == "avi":
return "MJPG", ".avi"
elif file_format == "webm":
return "VP80", ".webm"
else:
return "MJPG", ".avi"
def display_results(input_image, cam_frame, pupil_diameter, cols):
"""Displays the input image and overlayed CAM result."""
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
axs[0].imshow(input_image)
axs[0].axis("off")
axs[0].set_title("Input Image")
axs[1].imshow(cam_frame)
axs[1].axis("off")
axs[1].set_title("Overlayed CAM")
cols[-1].pyplot(fig)
cols[-1].text(f"Pupil Diameter: {pupil_diameter:.2f} mm")
def preprocess_image(input_img, max_size=(256, 256)):
"""Resizes and preprocesses an image."""
input_img.thumbnail(max_size)
preprocess_steps = [
transforms.ToTensor(),
transforms.Resize([32, 64], interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
]
return transforms.Compose(preprocess_steps)(input_img).unsqueeze(0)
def overlay_text_on_frame(frame, text, position=(16, 20)):
"""Write text on the image frame using OpenCV."""
return cv2.putText(frame, text, position, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, cv2.LINE_AA)
def get_configs(blink_detection=False):
upscale = "-"
upscale_method_or_model = "-"
if upscale == "-":
sr_configs = None
else:
sr_configs = {
"method": upscale_method_or_model,
"params": {"upscale": upscale},
}
config_file = {
"sr_configs": sr_configs,
"feature_extraction_configs": {
"blink_detection": blink_detection,
"upscale": upscale,
"extraction_library": "mediapipe",
},
}
return config_file
def setup(cols, pupil_selection, tv_model, output_path):
left_pupil_model = None
left_pupil_cam_extractor = None
right_pupil_model = None
right_pupil_cam_extractor = None
output_frames = {}
input_frames = {}
predicted_diameters = {}
pred_diameters_frames = {}
if pupil_selection == "both":
selected_eyes = ["left_eye", "right_eye"]
elif pupil_selection == "left_pupil":
selected_eyes = ["left_eye"]
elif pupil_selection == "right_pupil":
selected_eyes = ["right_eye"]
for i, eye_type in enumerate(selected_eyes):
model_configs = {
"model_path": root_path + f"/pre_trained_models/{tv_model}/{eye_type}.pt",
"registered_model_name": tv_model,
"num_classes": 1,
}
if eye_type == "left_eye":
left_pupil_model = load_model(model_configs)
left_pupil_cam_extractor = None
output_frames[eye_type] = []
input_frames[eye_type] = []
predicted_diameters[eye_type] = []
pred_diameters_frames[eye_type] = []
else:
right_pupil_model = load_model(model_configs)
right_pupil_cam_extractor = None
output_frames[eye_type] = []
input_frames[eye_type] = []
predicted_diameters[eye_type] = []
pred_diameters_frames[eye_type] = []
video_placeholders = {}
if output_path:
video_cols = cols[1].columns(len(input_frames.keys()))
for i, eye_type in enumerate(list(input_frames.keys())):
video_placeholders[eye_type] = video_cols[i].empty()
return (
selected_eyes,
input_frames,
output_frames,
predicted_diameters,
pred_diameters_frames,
video_placeholders,
left_pupil_model,
left_pupil_cam_extractor,
right_pupil_model,
right_pupil_cam_extractor,
)
def process_frames(
cols, input_imgs, tv_model, pupil_selection, cam_method, output_path=None, codec=None, blink_detection=False
):
config_file = get_configs(blink_detection)
face_frames = []
(
selected_eyes,
input_frames,
output_frames,
predicted_diameters,
pred_diameters_frames,
video_placeholders,
left_pupil_model,
left_pupil_cam_extractor,
right_pupil_model,
right_pupil_cam_extractor,
) = setup(cols, pupil_selection, tv_model, output_path)
ds_creation = EyeDentityDatasetCreation(
feature_extraction_configs=config_file["feature_extraction_configs"],
sr_configs=config_file["sr_configs"],
)
preprocess_steps = [
transforms.ToTensor(),
transforms.Resize(
[32, 64],
interpolation=transforms.InterpolationMode.BICUBIC,
antialias=True,
),
]
preprocess_function = transforms.Compose(preprocess_steps)
eyes_ratios = []
for idx, input_img in enumerate(input_imgs):
img = np.array(input_img)
ds_results = ds_creation(img)
left_eye = None
right_eye = None
blinked = False
eyes_ratio = None
if ds_results is not None and "face" in ds_results:
face_img = to_pil_image(ds_results["face"])
has_face = True
else:
face_img = to_pil_image(np.zeros((256, 256, 3), dtype=np.uint8))
has_face = False
face_frames.append({"has_face": has_face, "img": face_img})
if ds_results is not None and "eyes" in ds_results.keys():
blinked = ds_results["eyes"]["blinked"]
eyes_ratio = ds_results["eyes"]["eyes_ratio"]
if eyes_ratio is not None:
eyes_ratios.append(eyes_ratio)
if "left_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["left_eye"] is not None:
left_eye = ds_results["eyes"]["left_eye"]
left_eye = to_pil_image(left_eye).convert("RGB")
left_eye = preprocess_function(left_eye)
left_eye = left_eye.unsqueeze(0)
if "right_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["right_eye"] is not None:
right_eye = ds_results["eyes"]["right_eye"]
right_eye = to_pil_image(right_eye).convert("RGB")
right_eye = preprocess_function(right_eye)
right_eye = right_eye.unsqueeze(0)
else:
input_img = preprocess_function(input_img)
input_img = input_img.unsqueeze(0)
if pupil_selection == "left_pupil":
left_eye = input_img
elif pupil_selection == "right_pupil":
right_eye = input_img
else:
left_eye = input_img
right_eye = input_img
for i, eye_type in enumerate(selected_eyes):
if blinked:
if left_eye is not None and eye_type == "left_eye":
_, height, width = left_eye.squeeze(0).shape
input_image_pil = to_pil_image(left_eye.squeeze(0))
elif right_eye is not None and eye_type == "right_eye":
_, height, width = right_eye.squeeze(0).shape
input_image_pil = to_pil_image(right_eye.squeeze(0))
input_img_np = np.array(input_image_pil)
zeros_img = to_pil_image(np.zeros((height, width, 3), dtype=np.uint8))
output_img_np = overlay_text_on_frame(np.array(zeros_img), "blink")
predicted_diameter = "blink"
else:
if left_eye is not None and eye_type == "left_eye":
if left_pupil_cam_extractor is None:
if tv_model == "ResNet18":
target_layer = left_pupil_model.resnet.layer4[-1].conv2
elif tv_model == "ResNet50":
target_layer = left_pupil_model.resnet.layer4[-1].conv3
else:
raise Exception(f"No target layer available for selected model: {tv_model}")
left_pupil_cam_extractor = torchcam_methods.__dict__[cam_method](
left_pupil_model,
target_layer=target_layer,
fc_layer=left_pupil_model.resnet.fc,
input_shape=left_eye.shape,
)
output = left_pupil_model(left_eye)
predicted_diameter = output[0].item()
act_maps = left_pupil_cam_extractor(0, output)
activation_map = act_maps[0] if len(act_maps) == 1 else left_pupil_cam_extractor.fuse_cams(act_maps)
input_image_pil = to_pil_image(left_eye.squeeze(0))
elif right_eye is not None and eye_type == "right_eye":
if right_pupil_cam_extractor is None:
if tv_model == "ResNet18":
target_layer = right_pupil_model.resnet.layer4[-1].conv2
elif tv_model == "ResNet50":
target_layer = right_pupil_model.resnet.layer4[-1].conv3
else:
raise Exception(f"No target layer available for selected model: {tv_model}")
right_pupil_cam_extractor = torchcam_methods.__dict__[cam_method](
right_pupil_model,
target_layer=target_layer,
fc_layer=right_pupil_model.resnet.fc,
input_shape=right_eye.shape,
)
output = right_pupil_model(right_eye)
predicted_diameter = output[0].item()
act_maps = right_pupil_cam_extractor(0, output)
activation_map = (
act_maps[0] if len(act_maps) == 1 else right_pupil_cam_extractor.fuse_cams(act_maps)
)
input_image_pil = to_pil_image(right_eye.squeeze(0))
# Create CAM overlay
activation_map_pil = to_pil_image(activation_map, mode="F")
result = overlay_mask(input_image_pil, activation_map_pil, alpha=0.5)
input_img_np = np.array(input_image_pil)
output_img_np = np.array(result)
# Add frame and predicted diameter to lists
input_frames[eye_type].append(input_img_np)
output_frames[eye_type].append(output_img_np)
predicted_diameters[eye_type].append(predicted_diameter)
if output_path:
height, width, _ = output_img_np.shape
frame = np.zeros((height, width, 3), dtype=np.uint8)
if not isinstance(predicted_diameter, str):
text = f"{predicted_diameter:.2f}"
else:
text = predicted_diameter
frame = overlay_text_on_frame(frame, text)
pred_diameters_frames[eye_type].append(frame)
combined_frame = np.vstack((input_img_np, output_img_np, frame))
video_placeholders[eye_type].image(combined_frame, use_column_width=True)
st.session_state.current_frame = idx + 1
txt = f"<p style='font-size:20px;'> Number of Frames Processed: <strong>{st.session_state.current_frame} / {st.session_state.total_frames}</strong> </p>"
st.session_state.frame_placeholder.markdown(txt, unsafe_allow_html=True)
if output_path:
combine_and_show_frames(
input_frames, output_frames, pred_diameters_frames, output_path, codec, video_placeholders
)
return input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios
# Function to display video with autoplay and loop
def display_video_with_autoplay(video_col, video_path):
video_html = f"""
<video width="100%" height="auto" autoplay loop muted>
<source src="data:video/mp4;base64,{video_path}" type="video/mp4">
</video>
"""
video_col.markdown(video_html, unsafe_allow_html=True)
def process_video(cols, video_frames, tv_model, pupil_selection, output_path, cam_method, blink_detection=False):
resized_frames = []
for i, frame in enumerate(video_frames):
input_img = resize_frame(frame, max_width=640, max_height=480)
resized_frames.append(input_img)
file_format = output_path.split(".")[-1]
codec, extension = get_codec_and_extension(file_format)
input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios = process_frames(
cols, resized_frames, tv_model, pupil_selection, cam_method, output_path, codec, blink_detection
)
return input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios
# Function to convert string values to float or None
def convert_diameter(value):
try:
return float(value)
except (ValueError, TypeError):
return None # Return None if conversion fails
def combine_and_show_frames(input_frames, cam_frames, pred_diameters_frames, output_path, codec, video_cols):
# Assuming all frames have the same keys (eye types)
eye_types = input_frames.keys()
for i, eye_type in enumerate(eye_types):
in_frames = input_frames[eye_type]
cam_out_frames = cam_frames[eye_type]
pred_diameters_text_frames = pred_diameters_frames[eye_type]
# Get frame properties (assuming all frames have the same dimensions)
height, width, _ = in_frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*codec)
fps = 10.0
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height * 3)) # Width is tripled for concatenation
# Loop through each set of frames and concatenate them
for j in range(len(in_frames)):
input_frame = in_frames[j]
cam_frame = cam_out_frames[j]
pred_frame = pred_diameters_text_frames[j]
# Convert frames to BGR if necessary
input_frame_bgr = cv2.cvtColor(input_frame, cv2.COLOR_RGB2BGR)
cam_frame_bgr = cv2.cvtColor(cam_frame, cv2.COLOR_RGB2BGR)
pred_frame_bgr = cv2.cvtColor(pred_frame, cv2.COLOR_RGB2BGR)
# Concatenate frames horizontally (input, cam, pred)
combined_frame = np.vstack((input_frame_bgr, cam_frame_bgr, pred_frame_bgr))
# Write the combined frame to the video
out.write(combined_frame)
# Release the video writer
out.release()
# Read the video and encode it in base64 for displaying
with open(output_path, "rb") as video_file:
video_bytes = video_file.read()
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
# Display the combined video
display_video_with_autoplay(video_cols[eye_type], video_base64)
# Clean up
os.remove(output_path)
|