File size: 17,410 Bytes
9acc552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3733e70
 
 
 
 
 
 
 
 
 
 
 
9acc552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f8ef33
9acc552
 
 
 
 
 
 
 
 
 
 
 
8f8ef33
9acc552
 
 
 
8f8ef33
 
 
 
 
 
9acc552
8f8ef33
9acc552
8f8ef33
9acc552
 
 
3733e70
9acc552
 
 
 
 
 
 
 
 
 
4b41e60
9acc552
 
 
 
 
 
 
 
 
 
 
3733e70
9acc552
 
 
 
 
 
3733e70
9acc552
3733e70
8f8ef33
4b41e60
 
 
 
3733e70
4b41e60
8f8ef33
 
 
 
 
3733e70
 
8f8ef33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3733e70
 
8f8ef33
 
 
 
 
 
9acc552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f721d1
 
4b41e60
9acc552
 
 
 
 
 
 
5f721d1
9acc552
 
 
 
 
 
 
 
 
 
 
5f721d1
 
 
8f8ef33
 
 
 
 
 
 
 
 
 
9acc552
 
 
 
 
 
 
 
 
 
 
4b41e60
9acc552
 
8f8ef33
 
 
 
 
 
 
 
 
 
 
9acc552
8f8ef33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9acc552
 
 
8f8ef33
 
4b41e60
9acc552
4b41e60
 
9acc552
 
4b41e60
 
 
8f8ef33
 
 
 
4b41e60
3733e70
 
 
4b41e60
3733e70
4b41e60
 
 
 
 
 
3733e70
 
 
4b41e60
5f721d1
9acc552
 
 
 
 
 
 
 
 
 
 
 
8f8ef33
4b41e60
 
 
 
 
 
 
 
 
5f721d1
8f8ef33
 
 
5f721d1
8f8ef33
 
 
 
 
 
 
 
3733e70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import base64
from io import BytesIO
import os
import sys
import cv2
from matplotlib import pyplot as plt
import numpy as np
import streamlit as st
import torch
import tempfile
from PIL import Image
from torchvision.transforms.functional import to_pil_image
from torchvision import transforms

from torchcam.methods import CAM
from torchcam import methods as torchcam_methods
from torchcam.utils import overlay_mask
import os.path as osp

root_path = osp.abspath(osp.join(__file__, osp.pardir))
sys.path.append(root_path)

from preprocessing.dataset_creation import EyeDentityDatasetCreation
from utils import get_model


@torch.no_grad()
def load_model(model_configs, device="cpu"):
    """Loads the pre-trained model."""
    model_path = os.path.join(root_path, model_configs["model_path"])
    model_dict = torch.load(model_path, map_location=device)
    model = get_model(model_configs=model_configs)
    model.load_state_dict(model_dict)
    model = model.to(device).eval()
    return model


def extract_frames(video_path):
    """Extracts frames from a video file."""
    vidcap = cv2.VideoCapture(video_path)
    frames = []
    success, image = vidcap.read()
    while success:
        image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        frames.append(image_rgb)
        success, image = vidcap.read()
    vidcap.release()
    return frames


def resize_frame(image, max_width=640, max_height=480):
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    original_size = image.size

    # Resize the frame similarly to the image resizing logic
    if original_size[0] == original_size[1] and original_size[0] >= 256:
        max_size = (256, 256)
    else:
        max_size = list(original_size)
        if original_size[0] >= max_width:
            max_size[0] = max_width
        elif original_size[0] < 64:
            max_size[0] = 64
        if original_size[1] >= max_height:
            max_size[1] = max_height
        elif original_size[1] < 32:
            max_size[1] = 32

    image.thumbnail(max_size)
    # image = image.resize(max_size)
    return image


def is_image(file_extension):
    """Checks if the file is an image."""
    return file_extension.lower() in ["png", "jpeg", "jpg"]


def is_video(file_extension):
    """Checks if the file is a video."""
    return file_extension.lower() in ["mp4", "avi", "mov", "mkv", "webm"]


def get_codec_and_extension(file_format):
    """Return codec and file extension based on the format."""
    if file_format == "mp4":
        return "H264", ".mp4"
    elif file_format == "avi":
        return "MJPG", ".avi"
    elif file_format == "webm":
        return "VP80", ".webm"
    else:
        return "MJPG", ".avi"


def display_results(input_image, cam_frame, pupil_diameter, cols):
    """Displays the input image and overlayed CAM result."""
    fig, axs = plt.subplots(1, 2, figsize=(10, 5))
    axs[0].imshow(input_image)
    axs[0].axis("off")
    axs[0].set_title("Input Image")
    axs[1].imshow(cam_frame)
    axs[1].axis("off")
    axs[1].set_title("Overlayed CAM")
    cols[-1].pyplot(fig)
    cols[-1].text(f"Pupil Diameter: {pupil_diameter:.2f} mm")


def preprocess_image(input_img, max_size=(256, 256)):
    """Resizes and preprocesses an image."""
    input_img.thumbnail(max_size)
    preprocess_steps = [
        transforms.ToTensor(),
        transforms.Resize([32, 64], interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
    ]
    return transforms.Compose(preprocess_steps)(input_img).unsqueeze(0)


def overlay_text_on_frame(frame, text, position=(16, 20)):
    """Write text on the image frame using OpenCV."""
    return cv2.putText(frame, text, position, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, cv2.LINE_AA)


def get_configs(blink_detection=False):
    upscale = "-"
    upscale_method_or_model = "-"
    if upscale == "-":
        sr_configs = None
    else:
        sr_configs = {
            "method": upscale_method_or_model,
            "params": {"upscale": upscale},
        }
    config_file = {
        "sr_configs": sr_configs,
        "feature_extraction_configs": {
            "blink_detection": blink_detection,
            "upscale": upscale,
            "extraction_library": "mediapipe",
        },
    }

    return config_file


def setup(cols, pupil_selection, tv_model, output_path):

    left_pupil_model = None
    left_pupil_cam_extractor = None
    right_pupil_model = None
    right_pupil_cam_extractor = None
    output_frames = {}
    input_frames = {}
    predicted_diameters = {}
    pred_diameters_frames = {}

    if pupil_selection == "both":
        selected_eyes = ["left_eye", "right_eye"]

    elif pupil_selection == "left_pupil":
        selected_eyes = ["left_eye"]

    elif pupil_selection == "right_pupil":
        selected_eyes = ["right_eye"]

    for i, eye_type in enumerate(selected_eyes):
        model_configs = {
            "model_path": root_path + f"/pre_trained_models/{tv_model}/{eye_type}.pt",
            "registered_model_name": tv_model,
            "num_classes": 1,
        }
        if eye_type == "left_eye":
            left_pupil_model = load_model(model_configs)
            left_pupil_cam_extractor = None
            output_frames[eye_type] = []
            input_frames[eye_type] = []
            predicted_diameters[eye_type] = []
            pred_diameters_frames[eye_type] = []
        else:
            right_pupil_model = load_model(model_configs)
            right_pupil_cam_extractor = None
            output_frames[eye_type] = []
            input_frames[eye_type] = []
            predicted_diameters[eye_type] = []
            pred_diameters_frames[eye_type] = []

    video_placeholders = {}

    if output_path:
        video_cols = cols[1].columns(len(input_frames.keys()))

        for i, eye_type in enumerate(list(input_frames.keys())):
            video_placeholders[eye_type] = video_cols[i].empty()

    return (
        selected_eyes,
        input_frames,
        output_frames,
        predicted_diameters,
        pred_diameters_frames,
        video_placeholders,
        left_pupil_model,
        left_pupil_cam_extractor,
        right_pupil_model,
        right_pupil_cam_extractor,
    )


def process_frames(
    cols, input_imgs, tv_model, pupil_selection, cam_method, output_path=None, codec=None, blink_detection=False
):

    config_file = get_configs(blink_detection)

    face_frames = []

    (
        selected_eyes,
        input_frames,
        output_frames,
        predicted_diameters,
        pred_diameters_frames,
        video_placeholders,
        left_pupil_model,
        left_pupil_cam_extractor,
        right_pupil_model,
        right_pupil_cam_extractor,
    ) = setup(cols, pupil_selection, tv_model, output_path)

    ds_creation = EyeDentityDatasetCreation(
        feature_extraction_configs=config_file["feature_extraction_configs"],
        sr_configs=config_file["sr_configs"],
    )

    preprocess_steps = [
        transforms.ToTensor(),
        transforms.Resize(
            [32, 64],
            interpolation=transforms.InterpolationMode.BICUBIC,
            antialias=True,
        ),
    ]
    preprocess_function = transforms.Compose(preprocess_steps)

    eyes_ratios = []

    for idx, input_img in enumerate(input_imgs):

        img = np.array(input_img)
        ds_results = ds_creation(img)

        left_eye = None
        right_eye = None
        blinked = False
        eyes_ratio = None

        if ds_results is not None and "face" in ds_results:
            face_img = to_pil_image(ds_results["face"])
            has_face = True
        else:
            face_img = to_pil_image(np.zeros((256, 256, 3), dtype=np.uint8))
            has_face = False
        face_frames.append({"has_face": has_face, "img": face_img})

        if ds_results is not None and "eyes" in ds_results.keys():
            blinked = ds_results["eyes"]["blinked"]
            eyes_ratio = ds_results["eyes"]["eyes_ratio"]
            if eyes_ratio is not None:
                eyes_ratios.append(eyes_ratio)
            if "left_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["left_eye"] is not None:
                left_eye = ds_results["eyes"]["left_eye"]
                left_eye = to_pil_image(left_eye).convert("RGB")
                left_eye = preprocess_function(left_eye)
                left_eye = left_eye.unsqueeze(0)
            if "right_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["right_eye"] is not None:
                right_eye = ds_results["eyes"]["right_eye"]
                right_eye = to_pil_image(right_eye).convert("RGB")
                right_eye = preprocess_function(right_eye)
                right_eye = right_eye.unsqueeze(0)
        else:
            input_img = preprocess_function(input_img)
            input_img = input_img.unsqueeze(0)
            if pupil_selection == "left_pupil":
                left_eye = input_img
            elif pupil_selection == "right_pupil":
                right_eye = input_img
            else:
                left_eye = input_img
                right_eye = input_img

        for i, eye_type in enumerate(selected_eyes):

            if blinked:
                if left_eye is not None and eye_type == "left_eye":
                    _, height, width = left_eye.squeeze(0).shape
                    input_image_pil = to_pil_image(left_eye.squeeze(0))
                elif right_eye is not None and eye_type == "right_eye":
                    _, height, width = right_eye.squeeze(0).shape
                    input_image_pil = to_pil_image(right_eye.squeeze(0))

                input_img_np = np.array(input_image_pil)
                zeros_img = to_pil_image(np.zeros((height, width, 3), dtype=np.uint8))
                output_img_np = overlay_text_on_frame(np.array(zeros_img), "blink")
                predicted_diameter = "blink"
            else:
                if left_eye is not None and eye_type == "left_eye":
                    if left_pupil_cam_extractor is None:
                        if tv_model == "ResNet18":
                            target_layer = left_pupil_model.resnet.layer4[-1].conv2
                        elif tv_model == "ResNet50":
                            target_layer = left_pupil_model.resnet.layer4[-1].conv3
                        else:
                            raise Exception(f"No target layer available for selected model: {tv_model}")
                        left_pupil_cam_extractor = torchcam_methods.__dict__[cam_method](
                            left_pupil_model,
                            target_layer=target_layer,
                            fc_layer=left_pupil_model.resnet.fc,
                            input_shape=left_eye.shape,
                        )
                    output = left_pupil_model(left_eye)
                    predicted_diameter = output[0].item()
                    act_maps = left_pupil_cam_extractor(0, output)
                    activation_map = act_maps[0] if len(act_maps) == 1 else left_pupil_cam_extractor.fuse_cams(act_maps)
                    input_image_pil = to_pil_image(left_eye.squeeze(0))
                elif right_eye is not None and eye_type == "right_eye":
                    if right_pupil_cam_extractor is None:
                        if tv_model == "ResNet18":
                            target_layer = right_pupil_model.resnet.layer4[-1].conv2
                        elif tv_model == "ResNet50":
                            target_layer = right_pupil_model.resnet.layer4[-1].conv3
                        else:
                            raise Exception(f"No target layer available for selected model: {tv_model}")
                        right_pupil_cam_extractor = torchcam_methods.__dict__[cam_method](
                            right_pupil_model,
                            target_layer=target_layer,
                            fc_layer=right_pupil_model.resnet.fc,
                            input_shape=right_eye.shape,
                        )
                    output = right_pupil_model(right_eye)
                    predicted_diameter = output[0].item()
                    act_maps = right_pupil_cam_extractor(0, output)
                    activation_map = (
                        act_maps[0] if len(act_maps) == 1 else right_pupil_cam_extractor.fuse_cams(act_maps)
                    )
                    input_image_pil = to_pil_image(right_eye.squeeze(0))

                # Create CAM overlay
                activation_map_pil = to_pil_image(activation_map, mode="F")
                result = overlay_mask(input_image_pil, activation_map_pil, alpha=0.5)
                input_img_np = np.array(input_image_pil)
                output_img_np = np.array(result)

            # Add frame and predicted diameter to lists
            input_frames[eye_type].append(input_img_np)
            output_frames[eye_type].append(output_img_np)
            predicted_diameters[eye_type].append(predicted_diameter)

            if output_path:
                height, width, _ = output_img_np.shape
                frame = np.zeros((height, width, 3), dtype=np.uint8)
                if not isinstance(predicted_diameter, str):
                    text = f"{predicted_diameter:.2f}"
                else:
                    text = predicted_diameter
                frame = overlay_text_on_frame(frame, text)
                pred_diameters_frames[eye_type].append(frame)

                combined_frame = np.vstack((input_img_np, output_img_np, frame))

                video_placeholders[eye_type].image(combined_frame, use_column_width=True)

        st.session_state.current_frame = idx + 1
        txt = f"<p style='font-size:20px;'> Number of Frames Processed: <strong>{st.session_state.current_frame} / {st.session_state.total_frames}</strong> </p>"
        st.session_state.frame_placeholder.markdown(txt, unsafe_allow_html=True)

    if output_path:
        combine_and_show_frames(
            input_frames, output_frames, pred_diameters_frames, output_path, codec, video_placeholders
        )

    return input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios


# Function to display video with autoplay and loop
def display_video_with_autoplay(video_col, video_path):
    video_html = f"""
        <video width="100%" height="auto" autoplay loop muted>
            <source src="data:video/mp4;base64,{video_path}" type="video/mp4">
        </video>
    """
    video_col.markdown(video_html, unsafe_allow_html=True)


def process_video(cols, video_frames, tv_model, pupil_selection, output_path, cam_method, blink_detection=False):

    resized_frames = []
    for i, frame in enumerate(video_frames):
        input_img = resize_frame(frame, max_width=640, max_height=480)
        resized_frames.append(input_img)

    file_format = output_path.split(".")[-1]
    codec, extension = get_codec_and_extension(file_format)

    input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios = process_frames(
        cols, resized_frames, tv_model, pupil_selection, cam_method, output_path, codec, blink_detection
    )

    return input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios


# Function to convert string values to float or None
def convert_diameter(value):
    try:
        return float(value)
    except (ValueError, TypeError):
        return None  # Return None if conversion fails


def combine_and_show_frames(input_frames, cam_frames, pred_diameters_frames, output_path, codec, video_cols):
    # Assuming all frames have the same keys (eye types)
    eye_types = input_frames.keys()

    for i, eye_type in enumerate(eye_types):
        in_frames = input_frames[eye_type]
        cam_out_frames = cam_frames[eye_type]
        pred_diameters_text_frames = pred_diameters_frames[eye_type]

        # Get frame properties (assuming all frames have the same dimensions)
        height, width, _ = in_frames[0].shape
        fourcc = cv2.VideoWriter_fourcc(*codec)
        fps = 10.0
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height * 3))  # Width is tripled for concatenation

        # Loop through each set of frames and concatenate them
        for j in range(len(in_frames)):
            input_frame = in_frames[j]
            cam_frame = cam_out_frames[j]
            pred_frame = pred_diameters_text_frames[j]

            # Convert frames to BGR if necessary
            input_frame_bgr = cv2.cvtColor(input_frame, cv2.COLOR_RGB2BGR)
            cam_frame_bgr = cv2.cvtColor(cam_frame, cv2.COLOR_RGB2BGR)
            pred_frame_bgr = cv2.cvtColor(pred_frame, cv2.COLOR_RGB2BGR)

            # Concatenate frames horizontally (input, cam, pred)
            combined_frame = np.vstack((input_frame_bgr, cam_frame_bgr, pred_frame_bgr))

            # Write the combined frame to the video
            out.write(combined_frame)

        # Release the video writer
        out.release()

        # Read the video and encode it in base64 for displaying
        with open(output_path, "rb") as video_file:
            video_bytes = video_file.read()
            video_base64 = base64.b64encode(video_bytes).decode("utf-8")

        # Display the combined video
        display_video_with_autoplay(video_cols[eye_type], video_base64)

        # Clean up
        os.remove(output_path)