Spaces:
Running
Running
File size: 11,920 Bytes
0f2d9f6 9acc552 0f2d9f6 9acc552 0f2d9f6 9acc552 0f2d9f6 9acc552 0f2d9f6 5f721d1 0f2d9f6 9acc552 0f2d9f6 9acc552 0f2d9f6 5f721d1 0f2d9f6 9acc552 0f2d9f6 9acc552 0f2d9f6 9acc552 0f2d9f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import cv2
import torch
import warnings
import numpy as np
from PIL import Image
from math import sqrt
import mediapipe as mp
from transformers import pipeline
warnings.filterwarnings("ignore")
class ExtractorMediaPipe:
def __init__(self, upscale=1):
self.upscale = int(upscale)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ========== Face Extraction ==========
self.face_detector = mp.solutions.face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5)
self.face_mesh = mp.solutions.face_mesh.FaceMesh(
max_num_faces=1,
static_image_mode=True,
refine_landmarks=True,
min_detection_confidence=0.5,
min_tracking_confidence=0.5,
)
# ========== Eyes Extraction ==========
self.RIGHT_EYE = [
362,
382,
381,
380,
374,
373,
390,
249,
263,
466,
388,
387,
386,
385,
384,
398,
]
self.LEFT_EYE = [
33,
7,
163,
144,
145,
153,
154,
155,
133,
173,
157,
158,
159,
160,
161,
246,
]
# https://huggingface.co/dima806/closed_eyes_image_detection
# https://www.kaggle.com/code/dima806/closed-eye-image-detection-vit
self.pipe = pipeline(
"image-classification",
model="dima806/closed_eyes_image_detection",
device=self.device,
)
self.blink_lower_thresh = 0.22
self.blink_upper_thresh = 0.25
self.blink_confidence = 0.50
# ========== Iris Extraction ==========
self.RIGHT_IRIS = [474, 475, 476, 477]
self.LEFT_IRIS = [469, 470, 471, 472]
def extract_face(self, image):
tmp_image = image.copy()
results = self.face_detector.process(tmp_image)
if not results.detections:
# print("No face detected")
return None
else:
bboxC = results.detections[0].location_data.relative_bounding_box
ih, iw, _ = image.shape
# Get bounding box coordinates
x, y, w, h = (
int(bboxC.xmin * iw),
int(bboxC.ymin * ih),
int(bboxC.width * iw),
int(bboxC.height * ih),
)
# Calculate the center of the bounding box
center_x = x + w // 2
center_y = y + h // 2
# Calculate new bounds ensuring they fit within the image dimensions
half_size = 128 * self.upscale
x1 = max(center_x - half_size, 0)
y1 = max(center_y - half_size, 0)
x2 = min(center_x + half_size, iw)
y2 = min(center_y + half_size, ih)
# Adjust x1, x2, y1, and y2 to ensure the cropped region is exactly (256 * self.upscale) x (256 * self.upscale)
if x2 - x1 < (256 * self.upscale):
if x1 == 0:
x2 = min((256 * self.upscale), iw)
elif x2 == iw:
x1 = max(iw - (256 * self.upscale), 0)
if y2 - y1 < (256 * self.upscale):
if y1 == 0:
y2 = min((256 * self.upscale), ih)
elif y2 == ih:
y1 = max(ih - (256 * self.upscale), 0)
cropped_face = image[y1:y2, x1:x2]
# bicubic upsampling
# if self.upscale != 1:
# cropped_face = cv2.resize(
# cropped_face,
# (256 * self.upscale, 256 * self.upscale),
# interpolation=cv2.INTER_CUBIC,
# )
return cropped_face
@staticmethod
def landmarksDetection(image, results, draw=False):
image_height, image_width = image.shape[:2]
mesh_coordinates = [
(int(point.x * image_width), int(point.y * image_height))
for point in results.multi_face_landmarks[0].landmark
]
if draw:
[cv2.circle(image, i, 2, (0, 255, 0), -1) for i in mesh_coordinates]
return mesh_coordinates
@staticmethod
def euclideanDistance(point, point1):
x, y = point
x1, y1 = point1
distance = sqrt((x1 - x) ** 2 + (y1 - y) ** 2)
return distance
def blinkRatio(self, landmarks, right_indices, left_indices):
right_eye_landmark1 = landmarks[right_indices[0]]
right_eye_landmark2 = landmarks[right_indices[8]]
right_eye_landmark3 = landmarks[right_indices[12]]
right_eye_landmark4 = landmarks[right_indices[4]]
left_eye_landmark1 = landmarks[left_indices[0]]
left_eye_landmark2 = landmarks[left_indices[8]]
left_eye_landmark3 = landmarks[left_indices[12]]
left_eye_landmark4 = landmarks[left_indices[4]]
right_eye_horizontal_distance = self.euclideanDistance(right_eye_landmark1, right_eye_landmark2)
right_eye_vertical_distance = self.euclideanDistance(right_eye_landmark3, right_eye_landmark4)
left_eye_vertical_distance = self.euclideanDistance(left_eye_landmark3, left_eye_landmark4)
left_eye_horizontal_distance = self.euclideanDistance(left_eye_landmark1, left_eye_landmark2)
right_eye_ratio = right_eye_vertical_distance / right_eye_horizontal_distance
left_eye_ratio = left_eye_vertical_distance / left_eye_horizontal_distance
eyes_ratio = (right_eye_ratio + left_eye_ratio) / 2
return eyes_ratio
def extract_eyes_regions(self, image, landmarks, eye_indices):
h, w, _ = image.shape
points = [(int(landmarks[idx].x * w), int(landmarks[idx].y * h)) for idx in eye_indices]
x_min = min([p[0] for p in points])
x_max = max([p[0] for p in points])
y_min = min([p[1] for p in points])
y_max = max([p[1] for p in points])
center_x = (x_min + x_max) // 2
center_y = (y_min + y_max) // 2
target_width = 32 * self.upscale
target_height = 16 * self.upscale
x1 = max(center_x - target_width // 2, 0)
y1 = max(center_y - target_height // 2, 0)
x2 = x1 + target_width
y2 = y1 + target_height
if x2 > w:
x1 = w - target_width
x2 = w
if y2 > h:
y1 = h - target_height
y2 = h
return image[y1:y2, x1:x2]
def blink_detection_model(self, left_eye, right_eye):
left_eye = cv2.cvtColor(left_eye, cv2.COLOR_RGB2GRAY)
left_eye = Image.fromarray(left_eye)
preds_left = self.pipe(left_eye)
if preds_left[0]["label"] == "closeEye":
closed_left = preds_left[0]["score"] >= self.blink_confidence
else:
closed_left = preds_left[1]["score"] >= self.blink_confidence
right_eye = cv2.cvtColor(right_eye, cv2.COLOR_RGB2GRAY)
right_eye = Image.fromarray(right_eye)
preds_right = self.pipe(right_eye)
if preds_right[0]["label"] == "closeEye":
closed_right = preds_right[0]["score"] >= self.blink_confidence
else:
closed_right = preds_right[1]["score"] >= self.blink_confidence
# print("preds_left = ", preds_left)
# print("preds_right = ", preds_right)
return closed_left or closed_right
def extract_eyes(self, image, blink_detection=False):
tmp_face = image.copy()
results = self.face_mesh.process(tmp_face)
if results.multi_face_landmarks is None:
return None
face_landmarks = results.multi_face_landmarks[0].landmark
left_eye = self.extract_eyes_regions(image, face_landmarks, self.LEFT_EYE)
right_eye = self.extract_eyes_regions(image, face_landmarks, self.RIGHT_EYE)
blinked = False
eyes_ratio = None
if blink_detection:
mesh_coordinates = self.landmarksDetection(image, results, False)
eyes_ratio = self.blinkRatio(mesh_coordinates, self.RIGHT_EYE, self.LEFT_EYE)
if eyes_ratio > self.blink_lower_thresh and eyes_ratio <= self.blink_upper_thresh:
# print(
# "I think person blinked. eyes_ratio = ",
# eyes_ratio,
# "Confirming with ViT model...",
# )
blinked = self.blink_detection_model(left_eye=left_eye, right_eye=right_eye)
# if blinked:
# print("Yes, person blinked. Confirmed by model")
# else:
# print("No, person didn't blinked. False Alarm")
elif eyes_ratio <= self.blink_lower_thresh:
blinked = True
# print("Surely person blinked. eyes_ratio = ", eyes_ratio)
else:
blinked = False
return {"left_eye": left_eye, "right_eye": right_eye, "blinked": blinked, "eyes_ratio": eyes_ratio}
@staticmethod
def segment_iris(iris_img):
# Convert RGB image to grayscale
iris_img_gray = cv2.cvtColor(iris_img, cv2.COLOR_RGB2GRAY)
# Apply Gaussian blur for denoising
iris_img_blur = cv2.GaussianBlur(iris_img_gray, (5, 5), 0)
# Perform adaptive thresholding
_, iris_img_mask = cv2.threshold(iris_img_blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Invert the mask
segmented_mask = cv2.bitwise_not(iris_img_mask)
segmented_mask = cv2.cvtColor(segmented_mask, cv2.COLOR_GRAY2RGB)
segmented_iris = cv2.bitwise_and(iris_img, segmented_mask)
return {
"segmented_iris": segmented_iris,
"segmented_mask": segmented_mask,
}
def extract_iris(self, image):
ih, iw, _ = image.shape
tmp_face = image.copy()
results = self.face_mesh.process(tmp_face)
if results.multi_face_landmarks is None:
return None
mesh_coordinates = self.landmarksDetection(image, results, False)
mesh_points = np.array(mesh_coordinates)
(l_cx, l_cy), l_radius = cv2.minEnclosingCircle(mesh_points[self.LEFT_IRIS])
(r_cx, r_cy), r_radius = cv2.minEnclosingCircle(mesh_points[self.RIGHT_IRIS])
# Crop the left iris to be exactly 16*upscaled x 16*upscaled
l_x1 = max(int(l_cx) - (8 * self.upscale), 0)
l_y1 = max(int(l_cy) - (8 * self.upscale), 0)
l_x2 = min(int(l_cx) + (8 * self.upscale), iw)
l_y2 = min(int(l_cy) + (8 * self.upscale), ih)
cropped_left_iris = image[l_y1:l_y2, l_x1:l_x2]
left_iris_segmented_data = self.segment_iris(cv2.cvtColor(cropped_left_iris, cv2.COLOR_BGR2RGB))
# Crop the right iris to be exactly 16*upscaled x 16*upscaled
r_x1 = max(int(r_cx) - (8 * self.upscale), 0)
r_y1 = max(int(r_cy) - (8 * self.upscale), 0)
r_x2 = min(int(r_cx) + (8 * self.upscale), iw)
r_y2 = min(int(r_cy) + (8 * self.upscale), ih)
cropped_right_iris = image[r_y1:r_y2, r_x1:r_x2]
right_iris_segmented_data = self.segment_iris(cv2.cvtColor(cropped_right_iris, cv2.COLOR_BGR2RGB))
return {
"left_iris": {
"img": cropped_left_iris,
"segmented_iris": left_iris_segmented_data["segmented_iris"],
"segmented_mask": left_iris_segmented_data["segmented_mask"],
},
"right_iris": {
"img": cropped_right_iris,
"segmented_iris": right_iris_segmented_data["segmented_iris"],
"segmented_mask": right_iris_segmented_data["segmented_mask"],
},
}
|