pupilsense / app_utils.py
Shah
Update show/hide of sample videos
2921e2e
raw
history blame
34.9 kB
import base64
from io import BytesIO
import io
import os
import sys
import cv2
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
import torch
import tempfile
from PIL import Image
from torchvision.transforms.functional import to_pil_image
from torchvision import transforms
from PIL import ImageOps
import altair as alt
import streamlit.components.v1 as components
from torchcam.methods import CAM
from torchcam import methods as torchcam_methods
from torchcam.utils import overlay_mask
import os.path as osp
root_path = osp.abspath(osp.join(__file__, osp.pardir))
sys.path.append(root_path)
from preprocessing.dataset_creation import EyeDentityDatasetCreation
from utils import get_model
CAM_METHODS = ["CAM"]
# colors = ["#2ca02c", "#d62728", "#1f77b4", "#ff7f0e"] # Green, Red, Blue, Orange
colors = ["#1f77b4", "#ff7f0e", "#636363"] # Blue, Orange, Gray
@torch.no_grad()
def load_model(model_configs, device="cpu"):
"""Loads the pre-trained model."""
model_path = os.path.join(root_path, model_configs["model_path"])
model_dict = torch.load(model_path, map_location=device)
model = get_model(model_configs=model_configs)
model.load_state_dict(model_dict)
model = model.to(device).eval()
return model
def extract_frames(video_path):
"""Extracts frames from a video file."""
vidcap = cv2.VideoCapture(video_path)
frames = []
success, image = vidcap.read()
while success:
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
frames.append(image_rgb)
success, image = vidcap.read()
vidcap.release()
return frames
def resize_frame(image, max_width=640, max_height=480):
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
original_size = image.size
# Resize the frame similarly to the image resizing logic
if original_size[0] == original_size[1] and original_size[0] >= 256:
max_size = (256, 256)
else:
max_size = list(original_size)
if original_size[0] >= max_width:
max_size[0] = max_width
elif original_size[0] < 64:
max_size[0] = 64
if original_size[1] >= max_height:
max_size[1] = max_height
elif original_size[1] < 32:
max_size[1] = 32
image.thumbnail(max_size)
# image = image.resize(max_size)
return image
def is_image(file_extension):
"""Checks if the file is an image."""
return file_extension.lower() in ["png", "jpeg", "jpg"]
def is_video(file_extension):
"""Checks if the file is a video."""
return file_extension.lower() in ["mp4", "avi", "mov", "mkv", "webm"]
def get_codec_and_extension(file_format):
"""Return codec and file extension based on the format."""
if file_format == "mp4":
return "H264", ".mp4"
elif file_format == "avi":
return "MJPG", ".avi"
elif file_format == "webm":
return "VP80", ".webm"
else:
return "MJPG", ".avi"
def display_results(input_image, cam_frame, pupil_diameter, cols):
"""Displays the input image and overlayed CAM result."""
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
axs[0].imshow(input_image)
axs[0].axis("off")
axs[0].set_title("Input Image")
axs[1].imshow(cam_frame)
axs[1].axis("off")
axs[1].set_title("Overlayed CAM")
cols[-1].pyplot(fig)
cols[-1].text(f"Pupil Diameter: {pupil_diameter:.2f} mm")
def preprocess_image(input_img, max_size=(256, 256)):
"""Resizes and preprocesses an image."""
input_img.thumbnail(max_size)
preprocess_steps = [
transforms.ToTensor(),
transforms.Resize([32, 64], interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
]
return transforms.Compose(preprocess_steps)(input_img).unsqueeze(0)
def overlay_text_on_frame(frame, text, position=(16, 20)):
"""Write text on the image frame using OpenCV."""
return cv2.putText(frame, text, position, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, cv2.LINE_AA)
def get_configs(blink_detection=False):
upscale = "-"
upscale_method_or_model = "-"
if upscale == "-":
sr_configs = None
else:
sr_configs = {
"method": upscale_method_or_model,
"params": {"upscale": upscale},
}
config_file = {
"sr_configs": sr_configs,
"feature_extraction_configs": {
"blink_detection": blink_detection,
"upscale": upscale,
"extraction_library": "mediapipe",
},
}
return config_file
def setup(cols, pupil_selection, tv_model, output_path):
left_pupil_model = None
left_pupil_cam_extractor = None
right_pupil_model = None
right_pupil_cam_extractor = None
output_frames = {}
input_frames = {}
predicted_diameters = {}
pred_diameters_frames = {}
if pupil_selection == "both":
selected_eyes = ["left_eye", "right_eye"]
elif pupil_selection == "left_pupil":
selected_eyes = ["left_eye"]
elif pupil_selection == "right_pupil":
selected_eyes = ["right_eye"]
for i, eye_type in enumerate(selected_eyes):
model_configs = {
"model_path": root_path + f"/pre_trained_models/{tv_model}/{eye_type}.pt",
"registered_model_name": tv_model,
"num_classes": 1,
}
if eye_type == "left_eye":
left_pupil_model = load_model(model_configs)
left_pupil_cam_extractor = None
output_frames[eye_type] = []
input_frames[eye_type] = []
predicted_diameters[eye_type] = []
pred_diameters_frames[eye_type] = []
else:
right_pupil_model = load_model(model_configs)
right_pupil_cam_extractor = None
output_frames[eye_type] = []
input_frames[eye_type] = []
predicted_diameters[eye_type] = []
pred_diameters_frames[eye_type] = []
video_placeholders = {}
if output_path:
video_cols = cols[1].columns(len(input_frames.keys()))
for i, eye_type in enumerate(list(input_frames.keys())):
video_placeholders[eye_type] = video_cols[i].empty()
return (
selected_eyes,
input_frames,
output_frames,
predicted_diameters,
pred_diameters_frames,
video_placeholders,
left_pupil_model,
left_pupil_cam_extractor,
right_pupil_model,
right_pupil_cam_extractor,
)
def process_frames(
cols, input_imgs, tv_model, pupil_selection, cam_method, output_path=None, codec=None, blink_detection=False
):
config_file = get_configs(blink_detection)
face_frames = []
(
selected_eyes,
input_frames,
output_frames,
predicted_diameters,
pred_diameters_frames,
video_placeholders,
left_pupil_model,
left_pupil_cam_extractor,
right_pupil_model,
right_pupil_cam_extractor,
) = setup(cols, pupil_selection, tv_model, output_path)
ds_creation = EyeDentityDatasetCreation(
feature_extraction_configs=config_file["feature_extraction_configs"],
sr_configs=config_file["sr_configs"],
)
preprocess_steps = [
transforms.Resize(
[32, 64],
interpolation=transforms.InterpolationMode.BICUBIC,
antialias=True,
),
transforms.ToTensor(),
]
preprocess_function = transforms.Compose(preprocess_steps)
eyes_ratios = []
for idx, input_img in enumerate(input_imgs):
img = np.array(input_img)
ds_results = ds_creation(img)
left_eye = None
right_eye = None
blinked = False
eyes_ratio = None
if ds_results is not None and "face" in ds_results:
face_img = to_pil_image(ds_results["face"])
has_face = True
else:
face_img = to_pil_image(np.zeros((256, 256, 3), dtype=np.uint8))
has_face = False
face_frames.append({"has_face": has_face, "img": face_img})
if ds_results is not None and "eyes" in ds_results.keys():
blinked = ds_results["eyes"]["blinked"]
eyes_ratio = ds_results["eyes"]["eyes_ratio"]
if eyes_ratio is not None:
eyes_ratios.append(eyes_ratio)
if "left_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["left_eye"] is not None:
left_eye = ds_results["eyes"]["left_eye"]
left_eye = to_pil_image(left_eye).convert("RGB")
left_eye = preprocess_function(left_eye)
left_eye = left_eye.unsqueeze(0)
if "right_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["right_eye"] is not None:
right_eye = ds_results["eyes"]["right_eye"]
right_eye = to_pil_image(right_eye).convert("RGB")
right_eye = preprocess_function(right_eye)
right_eye = right_eye.unsqueeze(0)
else:
input_img = preprocess_function(input_img)
input_img = input_img.unsqueeze(0)
if pupil_selection == "left_pupil":
left_eye = input_img
elif pupil_selection == "right_pupil":
right_eye = input_img
else:
left_eye = input_img
right_eye = input_img
for i, eye_type in enumerate(selected_eyes):
if blinked:
if left_eye is not None and eye_type == "left_eye":
_, height, width = left_eye.squeeze(0).shape
input_image_pil = to_pil_image(left_eye.squeeze(0))
elif right_eye is not None and eye_type == "right_eye":
_, height, width = right_eye.squeeze(0).shape
input_image_pil = to_pil_image(right_eye.squeeze(0))
input_img_np = np.array(input_image_pil)
zeros_img = to_pil_image(np.zeros((height, width, 3), dtype=np.uint8))
output_img_np = overlay_text_on_frame(np.array(zeros_img), "blink")
predicted_diameter = "blink"
else:
if left_eye is not None and eye_type == "left_eye":
if left_pupil_cam_extractor is None:
if tv_model == "ResNet18":
target_layer = left_pupil_model.resnet.layer4[-1].conv2
elif tv_model == "ResNet50":
target_layer = left_pupil_model.resnet.layer4[-1].conv3
else:
raise Exception(f"No target layer available for selected model: {tv_model}")
left_pupil_cam_extractor = torchcam_methods.__dict__[cam_method](
left_pupil_model,
target_layer=target_layer,
fc_layer=left_pupil_model.resnet.fc,
input_shape=left_eye.shape,
)
output = left_pupil_model(left_eye)
predicted_diameter = output[0].item()
act_maps = left_pupil_cam_extractor(0, output)
activation_map = act_maps[0] if len(act_maps) == 1 else left_pupil_cam_extractor.fuse_cams(act_maps)
input_image_pil = to_pil_image(left_eye.squeeze(0))
elif right_eye is not None and eye_type == "right_eye":
if right_pupil_cam_extractor is None:
if tv_model == "ResNet18":
target_layer = right_pupil_model.resnet.layer4[-1].conv2
elif tv_model == "ResNet50":
target_layer = right_pupil_model.resnet.layer4[-1].conv3
else:
raise Exception(f"No target layer available for selected model: {tv_model}")
right_pupil_cam_extractor = torchcam_methods.__dict__[cam_method](
right_pupil_model,
target_layer=target_layer,
fc_layer=right_pupil_model.resnet.fc,
input_shape=right_eye.shape,
)
output = right_pupil_model(right_eye)
predicted_diameter = output[0].item()
act_maps = right_pupil_cam_extractor(0, output)
activation_map = (
act_maps[0] if len(act_maps) == 1 else right_pupil_cam_extractor.fuse_cams(act_maps)
)
input_image_pil = to_pil_image(right_eye.squeeze(0))
# Create CAM overlay
activation_map_pil = to_pil_image(activation_map, mode="F")
result = overlay_mask(input_image_pil, activation_map_pil, alpha=0.5)
input_img_np = np.array(input_image_pil)
output_img_np = np.array(result)
# Add frame and predicted diameter to lists
input_frames[eye_type].append(input_img_np)
output_frames[eye_type].append(output_img_np)
predicted_diameters[eye_type].append(predicted_diameter)
if output_path:
height, width, _ = output_img_np.shape
frame = np.zeros((height, width, 3), dtype=np.uint8)
if not isinstance(predicted_diameter, str):
text = f"{predicted_diameter:.2f}"
else:
text = predicted_diameter
frame = overlay_text_on_frame(frame, text)
pred_diameters_frames[eye_type].append(frame)
combined_frame = np.vstack((input_img_np, output_img_np, frame))
img_base64 = pil_image_to_base64(Image.fromarray(combined_frame))
image_html = f'<div style="width: {str(50*len(selected_eyes))}%;"><img src="data:image/png;base64,{img_base64}" style="width: 100%;"></div>'
video_placeholders[eye_type].markdown(image_html, unsafe_allow_html=True)
# video_placeholders[eye_type].image(combined_frame, use_column_width=True)
st.session_state.current_frame = idx + 1
txt = f"<p style='font-size:20px;'> Number of Frames Processed: <strong>{st.session_state.current_frame} / {st.session_state.total_frames}</strong> </p>"
st.session_state.frame_placeholder.markdown(txt, unsafe_allow_html=True)
if output_path:
combine_and_show_frames(
input_frames, output_frames, pred_diameters_frames, output_path, codec, video_placeholders
)
return input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios
# Function to display video with autoplay and loop
def display_video_with_autoplay(video_col, video_path, width):
video_html = f"""
<video width="{str(width)}%" height="auto" autoplay loop muted>
<source src="data:video/mp4;base64,{video_path}" type="video/mp4">
</video>
"""
video_col.markdown(video_html, unsafe_allow_html=True)
def process_video(cols, video_frames, tv_model, pupil_selection, output_path, cam_method, blink_detection=False):
resized_frames = []
for i, frame in enumerate(video_frames):
input_img = resize_frame(frame, max_width=640, max_height=480)
resized_frames.append(input_img)
file_format = output_path.split(".")[-1]
codec, extension = get_codec_and_extension(file_format)
input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios = process_frames(
cols, resized_frames, tv_model, pupil_selection, cam_method, output_path, codec, blink_detection
)
return input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios
# Function to convert string values to float or None
def convert_diameter(value):
try:
return float(value)
except (ValueError, TypeError):
return None # Return None if conversion fails
def combine_and_show_frames(input_frames, cam_frames, pred_diameters_frames, output_path, codec, video_cols):
# Assuming all frames have the same keys (eye types)
eye_types = input_frames.keys()
for i, eye_type in enumerate(eye_types):
in_frames = input_frames[eye_type]
cam_out_frames = cam_frames[eye_type]
pred_diameters_text_frames = pred_diameters_frames[eye_type]
# Get frame properties (assuming all frames have the same dimensions)
height, width, _ = in_frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*codec)
fps = 10.0
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height * 3)) # Width is tripled for concatenation
# Loop through each set of frames and concatenate them
for j in range(len(in_frames)):
input_frame = in_frames[j]
cam_frame = cam_out_frames[j]
pred_frame = pred_diameters_text_frames[j]
# Convert frames to BGR if necessary
input_frame_bgr = cv2.cvtColor(input_frame, cv2.COLOR_RGB2BGR)
cam_frame_bgr = cv2.cvtColor(cam_frame, cv2.COLOR_RGB2BGR)
pred_frame_bgr = cv2.cvtColor(pred_frame, cv2.COLOR_RGB2BGR)
# Concatenate frames horizontally (input, cam, pred)
combined_frame = np.vstack((input_frame_bgr, cam_frame_bgr, pred_frame_bgr))
# Write the combined frame to the video
out.write(combined_frame)
# Release the video writer
out.release()
# Read the video and encode it in base64 for displaying
with open(output_path, "rb") as video_file:
video_bytes = video_file.read()
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
# Display the combined video
display_video_with_autoplay(video_cols[eye_type], video_base64, width=len(video_cols) * 50)
# Clean up
os.remove(output_path)
def set_input_image_on_ui(uploaded_file, cols):
input_img = Image.open(BytesIO(uploaded_file.read())).convert("RGB")
# NOTE: images taken with phone camera has an EXIF data field which often rotates images taken with the phone in a tilted position. PIL has a utility function that removes this data and ‘uprights’ the image.
input_img = ImageOps.exif_transpose(input_img)
input_img = resize_frame(input_img, max_width=640, max_height=480)
input_img = resize_frame(input_img, max_width=640, max_height=480)
cols[0].image(input_img, use_column_width=True)
st.session_state.total_frames = 1
return input_img
def set_input_video_on_ui(uploaded_file, cols):
tfile = tempfile.NamedTemporaryFile(delete=False)
try:
tfile.write(uploaded_file.read())
except Exception:
tfile.write(uploaded_file)
video_path = tfile.name
video_frames = extract_frames(video_path)
cols[0].video(video_path)
st.session_state.total_frames = len(video_frames)
return video_frames, video_path
def set_frames_processed_count_placeholder(cols):
st.session_state.current_frame = 0
st.session_state.frame_placeholder = cols[0].empty()
txt = f"<p style='font-size:20px;'> Number of Frames Processed: <strong>{st.session_state.current_frame} / {st.session_state.total_frames}</strong> </p>"
st.session_state.frame_placeholder.markdown(txt, unsafe_allow_html=True)
def video_to_bytes(video_path):
# Open the video file in binary mode and return the bytes
with open(video_path, "rb") as video_file:
return video_file.read()
def display_video_library(video_folder="./sample_videos"):
# Get all video files from the folder
video_files = [f for f in os.listdir(video_folder) if f.endswith(".webm")]
# Store the selected video path
selected_video_path = None
# Calculate number of columns (adjust based on your layout preferences)
num_columns = 3 # For a grid of 3 videos per row
# Display videos in a grid layout with 'Select' button for each video
for i in range(0, len(video_files), num_columns):
cols = st.columns(num_columns)
for idx, video_file in enumerate(video_files[i : i + num_columns]):
with cols[idx]:
st.subheader(video_file.split(".")[0]) # Use the file name as the title
video_path = os.path.join(video_folder, video_file)
st.video(video_path) # Show the video
if st.button(f"Select {video_file.split('.')[0]}", key=video_file, type="primary"):
st.session_state.clear()
st.toast("Scroll Down to see the input and predictions", icon="⏬")
selected_video_path = video_path # Store the path of the selected video
return selected_video_path
def set_page_info_and_sidebar_info():
st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")
st.title("👁️ PupilSense 👁️🕵️‍♂️")
# st.markdown("Upload your own images or video **OR** select from our sample library below")
st.markdown(
"<p style='font-size: 30px;'>"
"Upload your own image 🖼️ or video 🎞️ <strong>OR</strong> select from our sample videos 📚"
"</p>",
unsafe_allow_html=True,
)
# video_path = display_video_library()
show_demo_videos = st.sidebar.checkbox("Show Sample Videos", value=False)
if show_demo_videos:
video_path = display_video_library()
else:
video_path = None
st.markdown("<hr id='target_element' style='border: 1px solid #6d6d6d; margin: 20px 0;'>", unsafe_allow_html=True)
cols = st.columns((1, 1))
cols[0].header("Input")
cols[-1].header("Prediction")
st.markdown("<hr style='border: 1px solid #6d6d6d; margin: 20px 0;'>", unsafe_allow_html=True)
LABEL_MAP = ["left_pupil", "right_pupil"]
TV_MODELS = ["ResNet18", "ResNet50"]
if "uploader_key" not in st.session_state:
st.session_state["uploader_key"] = 1
st.sidebar.title("Upload Face 👨‍🦱 or Eye 👁️")
uploaded_file = st.sidebar.file_uploader(
"Upload Image or Video",
type=["png", "jpeg", "jpg", "mp4", "avi", "mov", "mkv", "webm"],
key=st.session_state["uploader_key"],
)
if uploaded_file is not None:
st.session_state["uploaded_file"] = uploaded_file
st.sidebar.title("Setup")
pupil_selection = st.sidebar.selectbox(
"Pupil Selection", ["both"] + LABEL_MAP, help="Select left or right pupil OR both for diameter estimation"
)
tv_model = st.sidebar.selectbox("Classification model", TV_MODELS, help="Supported Models")
blink_detection = st.sidebar.checkbox("Detect Blinks", value=True)
st.markdown("<style>#vg-tooltip-element{z-index: 1000051}</style>", unsafe_allow_html=True)
if "uploaded_file" not in st.session_state:
st.session_state["uploaded_file"] = None
if "og_video_path" not in st.session_state:
st.session_state["og_video_path"] = None
if uploaded_file is None and video_path is not None:
video_bytes = video_to_bytes(video_path)
uploaded_file = video_bytes
st.session_state["uploaded_file"] = uploaded_file
st.session_state["og_video_path"] = video_path
st.session_state["uploader_key"] = 0
return (
cols,
st.session_state["og_video_path"],
st.session_state["uploaded_file"],
pupil_selection,
tv_model,
blink_detection,
)
def pil_image_to_base64(img):
"""Convert a PIL Image to a base64 encoded string."""
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
def process_image_and_vizualize_data(cols, input_img, tv_model, pupil_selection, blink_detection):
input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios = process_frames(
cols,
[input_img],
tv_model,
pupil_selection,
cam_method=CAM_METHODS[-1],
blink_detection=blink_detection,
)
# for ff in face_frames:
# if ff["has_face"]:
# cols[1].image(face_frames[0]["img"], use_column_width=True)
input_frames_keys = input_frames.keys()
video_cols = cols[1].columns(len(input_frames_keys))
for i, eye_type in enumerate(input_frames_keys):
# Check the pupil_selection and set the width accordingly
if pupil_selection == "both":
video_cols[i].image(input_frames[eye_type][-1], use_column_width=True)
else:
img_base64 = pil_image_to_base64(Image.fromarray(input_frames[eye_type][-1]))
image_html = f'<div style="width: 50%; margin-bottom: 1.2%;"><img src="data:image/png;base64,{img_base64}" style="width: 100%;"></div>'
video_cols[i].markdown(image_html, unsafe_allow_html=True)
output_frames_keys = output_frames.keys()
fig, axs = plt.subplots(1, len(output_frames_keys), figsize=(10, 5))
for i, eye_type in enumerate(output_frames_keys):
height, width, c = output_frames[eye_type][0].shape
frame = np.zeros((height, width, c), dtype=np.uint8)
text = f"{predicted_diameters[eye_type][0]:.2f}"
frame = overlay_text_on_frame(frame, text)
if pupil_selection == "both":
video_cols[i].image(output_frames[eye_type][-1], use_column_width=True)
video_cols[i].image(frame, use_column_width=True)
else:
img_base64 = pil_image_to_base64(Image.fromarray(output_frames[eye_type][-1]))
image_html = f'<div style="width: 50%; margin-top: 1.2%; margin-bottom: 1.2%"><img src="data:image/png;base64,{img_base64}" style="width: 100%;"></div>'
video_cols[i].markdown(image_html, unsafe_allow_html=True)
img_base64 = pil_image_to_base64(Image.fromarray(frame))
image_html = f'<div style="width: 50%; margin-top: 1.2%"><img src="data:image/png;base64,{img_base64}" style="width: 100%;"></div>'
video_cols[i].markdown(image_html, unsafe_allow_html=True)
return None
def plot_ears(eyes_ratios, eyes_df):
eyes_df["EAR"] = eyes_ratios
df = pd.DataFrame(eyes_ratios, columns=["EAR"])
df["Frame"] = range(1, len(eyes_ratios) + 1) # Create a frame column starting from 1
# Create an Altair chart for eyes_ratios
line_chart = (
alt.Chart(df)
.mark_line(color=colors[-1]) # Set color of the line
.encode(
x=alt.X("Frame:Q", title="Frame Number"),
y=alt.Y("EAR:Q", title="Eyes Aspect Ratio"),
tooltip=["Frame", "EAR"],
)
# .properties(title="Eyes Aspect Ratios (EARs)")
# .configure_axis(grid=True)
)
points_chart = line_chart.mark_point(color=colors[-1], filled=True)
# Create a horizontal rule at y=0.22
line1 = alt.Chart(pd.DataFrame({"y": [0.22]})).mark_rule(color="red").encode(y="y:Q")
line2 = alt.Chart(pd.DataFrame({"y": [0.25]})).mark_rule(color="green").encode(y="y:Q")
# Add text annotations for the lines
text1 = (
alt.Chart(pd.DataFrame({"y": [0.22], "label": ["Definite Blinks (<=0.22)"]}))
.mark_text(align="left", dx=100, dy=9, color="red", size=16)
.encode(y="y:Q", text="label:N")
)
text2 = (
alt.Chart(pd.DataFrame({"y": [0.25], "label": ["No Blinks (>=0.25)"]}))
.mark_text(align="left", dx=-150, dy=-9, color="green", size=16)
.encode(y="y:Q", text="label:N")
)
# Add gray area text for the region between red and green lines
gray_area_text = (
alt.Chart(pd.DataFrame({"y": [0.235], "label": ["Gray Area"]}))
.mark_text(align="left", dx=0, dy=0, color="gray", size=16)
.encode(y="y:Q", text="label:N")
)
# Combine all elements: line chart, points, rules, and text annotations
final_chart = (
line_chart.properties(title="Eyes Aspect Ratios (EARs)")
+ points_chart
+ line1
+ line2
+ text1
+ text2
+ gray_area_text
).interactive()
# Configure axis properties at the chart level
final_chart = final_chart.configure_axis(grid=True)
# Display the Altair chart
# st.subheader("Eyes Aspect Ratios (EARs)")
st.altair_chart(final_chart, use_container_width=True)
return eyes_df
def plot_individual_charts(predicted_diameters, cols):
# Iterate through categories and assign charts to columns
for i, (category, values) in enumerate(predicted_diameters.items()):
with cols[i]: # Directly use the column index
# st.subheader(category) # Add a subheader for the category
if "left" in category:
selected_color = colors[0]
elif "right" in category:
selected_color = colors[1]
else:
selected_color = colors[i]
# Convert values to numeric, replacing non-numeric values with None
values = [convert_diameter(value) for value in values]
if "left" in category:
category_name = "Left Pupil Diameter"
else:
category_name = "Right Pupil Diameter"
# Create a DataFrame from the values for Altair
df = pd.DataFrame(
{
"Frame": range(1, len(values) + 1),
category_name: values,
}
)
# Get the min and max values for y-axis limits, ignoring None
min_value = min(filter(lambda x: x is not None, values), default=None)
max_value = max(filter(lambda x: x is not None, values), default=None)
# Create an Altair chart with y-axis limits
line_chart = (
alt.Chart(df)
.mark_line(color=selected_color)
.encode(
x=alt.X("Frame:Q", title="Frame Number"),
y=alt.Y(
f"{category_name}:Q",
title="Diameter",
scale=alt.Scale(domain=[min_value, max_value]),
),
tooltip=[
"Frame",
alt.Tooltip(f"{category_name}:Q", title="Diameter"),
],
)
# .properties(title=f"{category} - Predicted Diameters")
# .configure_axis(grid=True)
)
points_chart = line_chart.mark_point(color=selected_color, filled=True)
final_chart = (
line_chart.properties(
title=f"{'Left Pupil' if 'left' in category else 'Right Pupil'} - Predicted Diameters"
)
+ points_chart
).interactive()
final_chart = final_chart.configure_axis(grid=True)
# Display the Altair chart
st.altair_chart(final_chart, use_container_width=True)
return df
def plot_combined_charts(predicted_diameters):
all_min_values = []
all_max_values = []
# Create an empty DataFrame to store combined data for plotting
combined_df = pd.DataFrame()
# Iterate through categories and collect data
for category, values in predicted_diameters.items():
# Convert values to numeric, replacing non-numeric values with None
values = [convert_diameter(value) for value in values]
# Get the min and max values for y-axis limits, ignoring None
min_value = min(filter(lambda x: x is not None, values), default=None)
max_value = max(filter(lambda x: x is not None, values), default=None)
all_min_values.append(min_value)
all_max_values.append(max_value)
category = "left_pupil" if "left" in category else "right_pupil"
# Create a DataFrame from the values
df = pd.DataFrame(
{
"Diameter": values,
"Frame": range(1, len(values) + 1), # Create a frame column starting from 1
"Category": category, # Add a column to specify the category
}
)
# Append to combined DataFrame
combined_df = pd.concat([combined_df, df], ignore_index=True)
combined_chart = (
alt.Chart(combined_df)
.mark_line()
.encode(
x=alt.X("Frame:Q", title="Frame Number"),
y=alt.Y(
"Diameter:Q",
title="Diameter",
scale=alt.Scale(domain=[min(all_min_values), max(all_max_values)]),
),
color=alt.Color("Category:N", scale=alt.Scale(range=colors), title="Pupil Type"),
tooltip=["Frame", "Diameter:Q", "Category:N"],
)
)
points_chart = combined_chart.mark_point(filled=True)
final_chart = (combined_chart.properties(title="Predicted Diameters") + points_chart).interactive()
final_chart = final_chart.configure_axis(grid=True)
# Display the combined chart
st.altair_chart(final_chart, use_container_width=True)
# --------------------------------------------
# Convert to a DataFrame
left_pupil_values = [convert_diameter(value) for value in predicted_diameters["left_eye"]]
right_pupil_values = [convert_diameter(value) for value in predicted_diameters["right_eye"]]
df = pd.DataFrame(
{
"Frame": range(1, len(left_pupil_values) + 1),
"Left Pupil Diameter": left_pupil_values,
"Right Pupil Diameter": right_pupil_values,
}
)
# Calculate the difference between left and right pupil diameters
df["Difference Value"] = df["Left Pupil Diameter"] - df["Right Pupil Diameter"]
# Determine the status of the difference
df["Difference Status"] = df.apply(
lambda row: "L>R" if row["Left Pupil Diameter"] > row["Right Pupil Diameter"] else "L<R",
axis=1,
)
return df
def process_video_and_visualize_data(cols, video_frames, tv_model, pupil_selection, blink_detection, video_path):
output_video_path = f"{root_path}/tmp.webm"
input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios = process_video(
cols,
video_frames,
tv_model,
pupil_selection,
output_video_path,
cam_method=CAM_METHODS[-1],
blink_detection=blink_detection,
)
os.remove(video_path)
num_columns = len(predicted_diameters)
cols = st.columns(num_columns)
if num_columns == 2:
df = plot_combined_charts(predicted_diameters)
else:
df = plot_individual_charts(predicted_diameters, cols)
if eyes_ratios is not None and len(eyes_ratios) > 0:
df = plot_ears(eyes_ratios, df)
st.dataframe(df, hide_index=True, use_container_width=True)