pupilsense / feature_extraction /extractor_mediapipe.py
vijul.shah
Added EAR Plots. TODO: solve color jitter bug
5f721d1
raw
history blame
11.9 kB
import cv2
import torch
import warnings
import numpy as np
from PIL import Image
from math import sqrt
import mediapipe as mp
from transformers import pipeline
warnings.filterwarnings("ignore")
class ExtractorMediaPipe:
def __init__(self, upscale=1):
self.upscale = int(upscale)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ========== Face Extraction ==========
self.face_detector = mp.solutions.face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5)
self.face_mesh = mp.solutions.face_mesh.FaceMesh(
max_num_faces=1,
static_image_mode=True,
refine_landmarks=True,
min_detection_confidence=0.5,
min_tracking_confidence=0.5,
)
# ========== Eyes Extraction ==========
self.RIGHT_EYE = [
362,
382,
381,
380,
374,
373,
390,
249,
263,
466,
388,
387,
386,
385,
384,
398,
]
self.LEFT_EYE = [
33,
7,
163,
144,
145,
153,
154,
155,
133,
173,
157,
158,
159,
160,
161,
246,
]
# https://huggingface.co/dima806/closed_eyes_image_detection
# https://www.kaggle.com/code/dima806/closed-eye-image-detection-vit
self.pipe = pipeline(
"image-classification",
model="dima806/closed_eyes_image_detection",
device=self.device,
)
self.blink_lower_thresh = 0.22
self.blink_upper_thresh = 0.25
self.blink_confidence = 0.50
# ========== Iris Extraction ==========
self.RIGHT_IRIS = [474, 475, 476, 477]
self.LEFT_IRIS = [469, 470, 471, 472]
def extract_face(self, image):
tmp_image = image.copy()
results = self.face_detector.process(tmp_image)
if not results.detections:
# print("No face detected")
return None
else:
bboxC = results.detections[0].location_data.relative_bounding_box
ih, iw, _ = image.shape
# Get bounding box coordinates
x, y, w, h = (
int(bboxC.xmin * iw),
int(bboxC.ymin * ih),
int(bboxC.width * iw),
int(bboxC.height * ih),
)
# Calculate the center of the bounding box
center_x = x + w // 2
center_y = y + h // 2
# Calculate new bounds ensuring they fit within the image dimensions
half_size = 128 * self.upscale
x1 = max(center_x - half_size, 0)
y1 = max(center_y - half_size, 0)
x2 = min(center_x + half_size, iw)
y2 = min(center_y + half_size, ih)
# Adjust x1, x2, y1, and y2 to ensure the cropped region is exactly (256 * self.upscale) x (256 * self.upscale)
if x2 - x1 < (256 * self.upscale):
if x1 == 0:
x2 = min((256 * self.upscale), iw)
elif x2 == iw:
x1 = max(iw - (256 * self.upscale), 0)
if y2 - y1 < (256 * self.upscale):
if y1 == 0:
y2 = min((256 * self.upscale), ih)
elif y2 == ih:
y1 = max(ih - (256 * self.upscale), 0)
cropped_face = image[y1:y2, x1:x2]
# bicubic upsampling
# if self.upscale != 1:
# cropped_face = cv2.resize(
# cropped_face,
# (256 * self.upscale, 256 * self.upscale),
# interpolation=cv2.INTER_CUBIC,
# )
return cropped_face
@staticmethod
def landmarksDetection(image, results, draw=False):
image_height, image_width = image.shape[:2]
mesh_coordinates = [
(int(point.x * image_width), int(point.y * image_height))
for point in results.multi_face_landmarks[0].landmark
]
if draw:
[cv2.circle(image, i, 2, (0, 255, 0), -1) for i in mesh_coordinates]
return mesh_coordinates
@staticmethod
def euclideanDistance(point, point1):
x, y = point
x1, y1 = point1
distance = sqrt((x1 - x) ** 2 + (y1 - y) ** 2)
return distance
def blinkRatio(self, landmarks, right_indices, left_indices):
right_eye_landmark1 = landmarks[right_indices[0]]
right_eye_landmark2 = landmarks[right_indices[8]]
right_eye_landmark3 = landmarks[right_indices[12]]
right_eye_landmark4 = landmarks[right_indices[4]]
left_eye_landmark1 = landmarks[left_indices[0]]
left_eye_landmark2 = landmarks[left_indices[8]]
left_eye_landmark3 = landmarks[left_indices[12]]
left_eye_landmark4 = landmarks[left_indices[4]]
right_eye_horizontal_distance = self.euclideanDistance(right_eye_landmark1, right_eye_landmark2)
right_eye_vertical_distance = self.euclideanDistance(right_eye_landmark3, right_eye_landmark4)
left_eye_vertical_distance = self.euclideanDistance(left_eye_landmark3, left_eye_landmark4)
left_eye_horizontal_distance = self.euclideanDistance(left_eye_landmark1, left_eye_landmark2)
right_eye_ratio = right_eye_vertical_distance / right_eye_horizontal_distance
left_eye_ratio = left_eye_vertical_distance / left_eye_horizontal_distance
eyes_ratio = (right_eye_ratio + left_eye_ratio) / 2
return eyes_ratio
def extract_eyes_regions(self, image, landmarks, eye_indices):
h, w, _ = image.shape
points = [(int(landmarks[idx].x * w), int(landmarks[idx].y * h)) for idx in eye_indices]
x_min = min([p[0] for p in points])
x_max = max([p[0] for p in points])
y_min = min([p[1] for p in points])
y_max = max([p[1] for p in points])
center_x = (x_min + x_max) // 2
center_y = (y_min + y_max) // 2
target_width = 32 * self.upscale
target_height = 16 * self.upscale
x1 = max(center_x - target_width // 2, 0)
y1 = max(center_y - target_height // 2, 0)
x2 = x1 + target_width
y2 = y1 + target_height
if x2 > w:
x1 = w - target_width
x2 = w
if y2 > h:
y1 = h - target_height
y2 = h
return image[y1:y2, x1:x2]
def blink_detection_model(self, left_eye, right_eye):
left_eye = cv2.cvtColor(left_eye, cv2.COLOR_RGB2GRAY)
left_eye = Image.fromarray(left_eye)
preds_left = self.pipe(left_eye)
if preds_left[0]["label"] == "closeEye":
closed_left = preds_left[0]["score"] >= self.blink_confidence
else:
closed_left = preds_left[1]["score"] >= self.blink_confidence
right_eye = cv2.cvtColor(right_eye, cv2.COLOR_RGB2GRAY)
right_eye = Image.fromarray(right_eye)
preds_right = self.pipe(right_eye)
if preds_right[0]["label"] == "closeEye":
closed_right = preds_right[0]["score"] >= self.blink_confidence
else:
closed_right = preds_right[1]["score"] >= self.blink_confidence
# print("preds_left = ", preds_left)
# print("preds_right = ", preds_right)
return closed_left or closed_right
def extract_eyes(self, image, blink_detection=False):
tmp_face = image.copy()
results = self.face_mesh.process(tmp_face)
if results.multi_face_landmarks is None:
return None
face_landmarks = results.multi_face_landmarks[0].landmark
left_eye = self.extract_eyes_regions(image, face_landmarks, self.LEFT_EYE)
right_eye = self.extract_eyes_regions(image, face_landmarks, self.RIGHT_EYE)
blinked = False
eyes_ratio = None
if blink_detection:
mesh_coordinates = self.landmarksDetection(image, results, False)
eyes_ratio = self.blinkRatio(mesh_coordinates, self.RIGHT_EYE, self.LEFT_EYE)
if eyes_ratio > self.blink_lower_thresh and eyes_ratio <= self.blink_upper_thresh:
# print(
# "I think person blinked. eyes_ratio = ",
# eyes_ratio,
# "Confirming with ViT model...",
# )
blinked = self.blink_detection_model(left_eye=left_eye, right_eye=right_eye)
# if blinked:
# print("Yes, person blinked. Confirmed by model")
# else:
# print("No, person didn't blinked. False Alarm")
elif eyes_ratio <= self.blink_lower_thresh:
blinked = True
# print("Surely person blinked. eyes_ratio = ", eyes_ratio)
else:
blinked = False
return {"left_eye": left_eye, "right_eye": right_eye, "blinked": blinked, "eyes_ratio": eyes_ratio}
@staticmethod
def segment_iris(iris_img):
# Convert RGB image to grayscale
iris_img_gray = cv2.cvtColor(iris_img, cv2.COLOR_RGB2GRAY)
# Apply Gaussian blur for denoising
iris_img_blur = cv2.GaussianBlur(iris_img_gray, (5, 5), 0)
# Perform adaptive thresholding
_, iris_img_mask = cv2.threshold(iris_img_blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Invert the mask
segmented_mask = cv2.bitwise_not(iris_img_mask)
segmented_mask = cv2.cvtColor(segmented_mask, cv2.COLOR_GRAY2RGB)
segmented_iris = cv2.bitwise_and(iris_img, segmented_mask)
return {
"segmented_iris": segmented_iris,
"segmented_mask": segmented_mask,
}
def extract_iris(self, image):
ih, iw, _ = image.shape
tmp_face = image.copy()
results = self.face_mesh.process(tmp_face)
if results.multi_face_landmarks is None:
return None
mesh_coordinates = self.landmarksDetection(image, results, False)
mesh_points = np.array(mesh_coordinates)
(l_cx, l_cy), l_radius = cv2.minEnclosingCircle(mesh_points[self.LEFT_IRIS])
(r_cx, r_cy), r_radius = cv2.minEnclosingCircle(mesh_points[self.RIGHT_IRIS])
# Crop the left iris to be exactly 16*upscaled x 16*upscaled
l_x1 = max(int(l_cx) - (8 * self.upscale), 0)
l_y1 = max(int(l_cy) - (8 * self.upscale), 0)
l_x2 = min(int(l_cx) + (8 * self.upscale), iw)
l_y2 = min(int(l_cy) + (8 * self.upscale), ih)
cropped_left_iris = image[l_y1:l_y2, l_x1:l_x2]
left_iris_segmented_data = self.segment_iris(cv2.cvtColor(cropped_left_iris, cv2.COLOR_BGR2RGB))
# Crop the right iris to be exactly 16*upscaled x 16*upscaled
r_x1 = max(int(r_cx) - (8 * self.upscale), 0)
r_y1 = max(int(r_cy) - (8 * self.upscale), 0)
r_x2 = min(int(r_cx) + (8 * self.upscale), iw)
r_y2 = min(int(r_cy) + (8 * self.upscale), ih)
cropped_right_iris = image[r_y1:r_y2, r_x1:r_x2]
right_iris_segmented_data = self.segment_iris(cv2.cvtColor(cropped_right_iris, cv2.COLOR_BGR2RGB))
return {
"left_iris": {
"img": cropped_left_iris,
"segmented_iris": left_iris_segmented_data["segmented_iris"],
"segmented_mask": left_iris_segmented_data["segmented_mask"],
},
"right_iris": {
"img": cropped_right_iris,
"segmented_iris": right_iris_segmented_data["segmented_iris"],
"segmented_mask": right_iris_segmented_data["segmented_mask"],
},
}