pupilsense / SR_Inference /inference_realesr.py
vijul.shah
End-to-End Pipeline Configured
0f2d9f6
raw
history blame
1.57 kB
import os
import cv2
import sys
import torch
import os.path as osp
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir))
sys.path.append(root_path)
from SR_Inference.inference_sr_utils import RealEsrUpsamplerZoo
class RealEsr:
def __init__(
self,
upscale=2,
bg_upsampler_name="realesrgan",
prefered_net_in_upsampler="RRDBNet",
):
self.upscale = int(upscale)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ------------------------ set up background upsampler ------------------------
self.upsampler_zoo = RealEsrUpsamplerZoo(
upscale=self.upscale,
bg_upsampler_name=bg_upsampler_name,
prefered_net_in_upsampler=prefered_net_in_upsampler,
)
self.bg_upsampler = self.upsampler_zoo.bg_upsampler
def __call__(self, img):
# ---------------- restore/enhance image using the selected RealESR model ----------------
sr_img = self.bg_upsampler.enhance(img, outscale=self.upscale)[0]
return sr_img
if __name__ == "__main__":
realesr = RealEsr(
upscale=2, bg_upsampler_name="realesrgan", prefered_net_in_upsampler="RRDBNet"
)
img = cv2.imread(f"{ROOT_DIR}/data/EyeDentify/Wo_SR/original/1/1/frame_01.png")
sr_img = realesr(img=img)
saving_dir = f"{ROOT_DIR}/rough_works/SR_imgs"
os.makedirs(saving_dir, exist_ok=True)
cv2.imwrite(f"{saving_dir}/sr_img.png", sr_img)