Spaces:
Running
Running
import os | |
import cv2 | |
import sys | |
import torch | |
import os.path as osp | |
from basicsr.utils import img2tensor, tensor2img | |
from torchvision.transforms.functional import normalize | |
from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir)) | |
sys.path.append(root_path) | |
from SR_Inference.codeformer.codeformer_arch import CodeFormerArch | |
from SR_Inference.inference_sr_utils import RealEsrUpsamplerZoo | |
class CodeFormer: | |
def __init__( | |
self, | |
upscale=2, | |
bg_upsampler_name="realesrgan", | |
prefered_net_in_upsampler="RRDBNet", | |
fidelity_weight=0.8, | |
): | |
self.upscale = int(upscale) | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.fidelity_weight = fidelity_weight | |
# ------------------------ set up background upsampler ------------------------ | |
upsampler_zoo = RealEsrUpsamplerZoo( | |
upscale=self.upscale, | |
bg_upsampler_name=bg_upsampler_name, | |
prefered_net_in_upsampler=prefered_net_in_upsampler, | |
) | |
self.bg_upsampler = upsampler_zoo.bg_upsampler | |
# ------------------ set up FaceRestoreHelper ------------------- | |
gfpgan_weights_path = os.path.join( | |
ROOT_DIR, "SR_Inference", "gfpgan", "weights" | |
) | |
self.face_restorer_helper = FaceRestoreHelper( | |
upscale_factor=self.upscale, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model="retinaface_resnet50", | |
save_ext="png", | |
use_parse=True, | |
device=self.device, | |
# model_rootpath="gfpgan/weights", | |
model_rootpath=gfpgan_weights_path, | |
) | |
# ------------------ load model ------------------- | |
self.sr_model = CodeFormerArch().to(self.device) | |
ckpt_path = os.path.join( | |
ROOT_DIR, "SR_Inference", "codeformer", "weights", "codeformer_v0.1.0.pth" | |
) | |
loadnet = torch.load(ckpt_path, map_location=self.device) | |
if "params_ema" in loadnet: | |
keyname = "params_ema" | |
else: | |
keyname = "params" | |
self.sr_model.load_state_dict(loadnet[keyname]) | |
self.sr_model.eval() | |
def __call__(self, img): | |
bg_img = self.bg_upsampler.enhance(img, outscale=self.upscale)[0] | |
self.face_restorer_helper.clean_all() | |
self.face_restorer_helper.read_image(img) | |
self.face_restorer_helper.get_face_landmarks_5( | |
only_keep_largest=True, only_center_face=False, eye_dist_threshold=5 | |
) | |
self.face_restorer_helper.align_warp_face() | |
if len(self.face_restorer_helper.cropped_faces) > 0: | |
cropped_face = self.face_restorer_helper.cropped_faces[0] | |
cropped_face_t = img2tensor( | |
imgs=cropped_face / 255.0, bgr2rgb=True, float32=True | |
) | |
normalize( | |
tensor=cropped_face_t, | |
mean=(0.5, 0.5, 0.5), | |
std=(0.5, 0.5, 0.5), | |
inplace=True, | |
) | |
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device) | |
# ------------------- restore/enhance image using CodeFormerArch model ------------------- | |
output = self.sr_model(cropped_face_t, w=self.fidelity_weight, adain=True)[ | |
0 | |
] | |
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) | |
restored_face = restored_face.astype("uint8") | |
self.face_restorer_helper.add_restored_face(restored_face) | |
self.face_restorer_helper.get_inverse_affine(None) | |
sr_img = self.face_restorer_helper.paste_faces_to_input_image( | |
upsample_img=bg_img | |
) | |
else: | |
sr_img = bg_img | |
return sr_img | |
if __name__ == "__main__": | |
codeformer = CodeFormer(upscale=2, fidelity_weight=1.0) | |
img = cv2.imread(f"{ROOT_DIR}/data/EyeDentify/Wo_SR/original/1/1/frame_01.png") | |
sr_img = codeformer(img=img) | |
saving_dir = f"{ROOT_DIR}/rough_works/SR_imgs" | |
os.makedirs(saving_dir, exist_ok=True) | |
cv2.imwrite(f"{saving_dir}/sr_img.png", sr_img) | |