pupilsense / app_utils.py
vijul.shah
Input Video and Predictions as output video added
9acc552
raw
history blame
14 kB
import base64
from io import BytesIO
import os
import sys
import cv2
from matplotlib import pyplot as plt
import numpy as np
import streamlit as st
import torch
import tempfile
from PIL import Image
from torchvision.transforms.functional import to_pil_image
from torchvision import transforms
from torchcam.methods import CAM
from torchcam import methods as torchcam_methods
from torchcam.utils import overlay_mask
import os.path as osp
root_path = osp.abspath(osp.join(__file__, osp.pardir))
sys.path.append(root_path)
from preprocessing.dataset_creation import EyeDentityDatasetCreation
from utils import get_model
@torch.no_grad()
def load_model(model_configs, device="cpu"):
"""Loads the pre-trained model."""
model_path = os.path.join(root_path, model_configs["model_path"])
model_dict = torch.load(model_path, map_location=device)
model = get_model(model_configs=model_configs)
model.load_state_dict(model_dict)
model = model.to(device).eval()
return model
def extract_frames(video_path):
"""Extracts frames from a video file."""
vidcap = cv2.VideoCapture(video_path)
frames = []
success, image = vidcap.read()
while success:
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
frames.append(image_rgb)
success, image = vidcap.read()
vidcap.release()
return frames
def resize_frame(image, max_width=640, max_height=480):
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
original_size = image.size
# Resize the frame similarly to the image resizing logic
if original_size[0] == original_size[1] and original_size[0] >= 256:
max_size = (256, 256)
else:
max_size = list(original_size)
if original_size[0] >= max_width:
max_size[0] = max_width
elif original_size[0] < 64:
max_size[0] = 64
if original_size[1] >= max_height:
max_size[1] = max_height
elif original_size[1] < 32:
max_size[1] = 32
image.thumbnail(max_size)
# image = image.resize(max_size)
return image
def is_image(file_extension):
"""Checks if the file is an image."""
return file_extension.lower() in ["png", "jpeg", "jpg"]
def is_video(file_extension):
"""Checks if the file is a video."""
return file_extension.lower() in ["mp4", "avi", "mov", "mkv", "webm"]
def display_results(input_image, cam_frame, pupil_diameter, cols):
"""Displays the input image and overlayed CAM result."""
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
axs[0].imshow(input_image)
axs[0].axis("off")
axs[0].set_title("Input Image")
axs[1].imshow(cam_frame)
axs[1].axis("off")
axs[1].set_title("Overlayed CAM")
cols[-1].pyplot(fig)
cols[-1].text(f"Pupil Diameter: {pupil_diameter:.2f} mm")
def preprocess_image(input_img, max_size=(256, 256)):
"""Resizes and preprocesses an image."""
input_img.thumbnail(max_size)
preprocess_steps = [
transforms.ToTensor(),
transforms.Resize([32, 64], interpolation=transforms.InterpolationMode.BICUBIC, antialias=True),
]
return transforms.Compose(preprocess_steps)(input_img).unsqueeze(0)
def overlay_text_on_frame(frame, text, position=(16, 20)):
"""Write text on the image frame using OpenCV."""
return cv2.putText(frame, text, position, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, cv2.LINE_AA)
def process_frames(input_imgs, tv_model, pupil_selection, cam_method):
upscale = "-"
upscale_method_or_model = "-"
if upscale == "-":
sr_configs = None
else:
sr_configs = {
"method": upscale_method_or_model,
"params": {"upscale": upscale},
}
config_file = {
"sr_configs": sr_configs,
"feature_extraction_configs": {
"blink_detection": False,
"upscale": upscale,
"extraction_library": "mediapipe",
},
}
left_pupil_model = None
right_pupil_model = None
face_frames = []
output_frames = {}
input_frames = {}
predicted_diameters = {}
if pupil_selection == "both":
selected_eyes = ["left_eye", "right_eye"]
elif pupil_selection == "left_pupil":
selected_eyes = ["left_eye"]
elif pupil_selection == "right_pupil":
selected_eyes = ["right_eye"]
for eye_type in selected_eyes:
model_configs = {
"model_path": root_path + f"/pre_trained_models/{tv_model}/{eye_type}.pt",
"registered_model_name": tv_model,
"num_classes": 1,
}
if eye_type == "left_eye":
left_pupil_model = load_model(model_configs)
left_pupil_cam_extractor = None
output_frames[eye_type] = []
input_frames[eye_type] = []
predicted_diameters[eye_type] = []
else:
right_pupil_model = load_model(model_configs)
right_pupil_cam_extractor = None
output_frames[eye_type] = []
input_frames[eye_type] = []
predicted_diameters[eye_type] = []
ds_creation = EyeDentityDatasetCreation(
feature_extraction_configs=config_file["feature_extraction_configs"],
sr_configs=config_file["sr_configs"],
)
preprocess_steps = [
transforms.ToTensor(),
transforms.Resize(
[32, 64],
interpolation=transforms.InterpolationMode.BICUBIC,
antialias=True,
),
]
preprocess_function = transforms.Compose(preprocess_steps)
for input_img in input_imgs:
img = np.array(input_img)
ds_results = ds_creation(img)
left_eye = None
right_eye = None
blinked = False
if ds_results is not None and "face" in ds_results:
face_img = to_pil_image(ds_results["face"])
has_face = True
else:
face_img = to_pil_image(np.zeros((256, 256, 3), dtype=np.uint8))
has_face = False
face_frames.append({"has_face": has_face, "img": face_img})
if ds_results is not None and "eyes" in ds_results.keys():
blinked = ds_results["eyes"]["blinked"]
if not blinked:
if "left_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["left_eye"] is not None:
left_eye = ds_results["eyes"]["left_eye"]
left_eye = to_pil_image(left_eye).convert("RGB")
left_eye = preprocess_function(left_eye)
left_eye = left_eye.unsqueeze(0)
if "right_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["right_eye"] is not None:
right_eye = ds_results["eyes"]["right_eye"]
right_eye = to_pil_image(right_eye).convert("RGB")
right_eye = preprocess_function(right_eye)
right_eye = right_eye.unsqueeze(0)
else:
input_img = preprocess_function(input_img)
input_img = input_img.unsqueeze(0)
if pupil_selection == "left_pupil":
left_eye = input_img
elif pupil_selection == "right_pupil":
right_eye = input_img
else:
left_eye = input_img
right_eye = input_img
for eye_type in selected_eyes:
if left_eye is not None and eye_type == "left_eye":
if left_pupil_cam_extractor is None:
if tv_model == "ResNet18":
target_layer = left_pupil_model.resnet.layer4[-1].conv2
elif tv_model == "ResNet50":
target_layer = left_pupil_model.resnet.layer4[-1].conv3
else:
raise Exception(f"No target layer available for selected model: {tv_model}")
left_pupil_cam_extractor = torchcam_methods.__dict__[cam_method](
left_pupil_model,
target_layer=target_layer,
fc_layer=left_pupil_model.resnet.fc,
input_shape=left_eye.shape,
)
output = left_pupil_model(left_eye)
predicted_diameter = output[0].item()
act_maps = left_pupil_cam_extractor(0, output)
activation_map = act_maps[0] if len(act_maps) == 1 else left_pupil_cam_extractor.fuse_cams(act_maps)
input_image_pil = to_pil_image(left_eye.squeeze(0))
elif right_eye is not None and eye_type == "right_eye":
if right_pupil_cam_extractor is None:
if tv_model == "ResNet18":
target_layer = right_pupil_model.resnet.layer4[-1].conv2
elif tv_model == "ResNet50":
target_layer = right_pupil_model.resnet.layer4[-1].conv3
else:
raise Exception(f"No target layer available for selected model: {tv_model}")
right_pupil_cam_extractor = torchcam_methods.__dict__[cam_method](
right_pupil_model,
target_layer=target_layer,
fc_layer=right_pupil_model.resnet.fc,
input_shape=right_eye.shape,
)
output = right_pupil_model(right_eye)
predicted_diameter = output[0].item()
act_maps = right_pupil_cam_extractor(0, output)
activation_map = act_maps[0] if len(act_maps) == 1 else right_pupil_cam_extractor.fuse_cams(act_maps)
input_image_pil = to_pil_image(right_eye.squeeze(0))
if blinked:
zeros_img = to_pil_image(np.zeros((256, 256, 3), dtype=np.uint8))
input_image_pil = zeros_img
result = zeros_img
predicted_diameter = 0
else:
# Create CAM overlay
activation_map_pil = to_pil_image(activation_map, mode="F")
result = overlay_mask(input_image_pil, activation_map_pil, alpha=0.5)
# Add frame and predicted diameter to lists
input_frames[eye_type].append(np.array(input_image_pil))
output_frames[eye_type].append(np.array(result))
predicted_diameters[eye_type].append(predicted_diameter)
return input_frames, output_frames, predicted_diameters, face_frames
# Function to display video with autoplay and loop
def display_video_with_autoplay(video_col, video_path):
video_html = f"""
<video width="100%" height="auto" autoplay loop muted>
<source src="data:video/mp4;base64,{video_path}" type="video/mp4">
</video>
"""
video_col.markdown(video_html, unsafe_allow_html=True)
def get_codec_and_extension(file_format):
"""Return codec and file extension based on the format."""
if file_format == "mp4":
return "H264", ".mp4"
elif file_format == "avi":
return "MJPG", ".avi"
elif file_format == "webm":
return "VP80", ".webm"
else:
return "MJPG", ".avi"
def process_video(cols, video_frames, tv_model, pupil_selection, output_path, cam_method):
resized_frames = []
for i, frame in enumerate(video_frames):
input_img = resize_frame(frame, max_width=640, max_height=480)
# input_img = Image.fromarray(input_img)
resized_frames.append(input_img)
input_frames, output_frames, predicted_diameters, face_frames = process_frames(
resized_frames, tv_model, pupil_selection, cam_method
)
file_format = output_path.split(".")[-1]
codec, extension = get_codec_and_extension(file_format)
video_cols = cols[1].columns(len(input_frames.keys()))
for i, eye_type in enumerate(input_frames.keys()):
in_frames = input_frames[eye_type]
height, width, _ = in_frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*codec)
fps = 10.0
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
for frame in in_frames:
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
out.release()
with open(output_path, "rb") as video_file:
video_bytes = video_file.read()
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
display_video_with_autoplay(video_cols[i], video_base64)
os.remove(output_path)
for i, eye_type in enumerate(output_frames.keys()):
out_frames = output_frames[eye_type]
height, width, _ = out_frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*codec)
fps = 10.0
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
for j, frame in enumerate(out_frames):
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
out.release()
with open(output_path, "rb") as video_file:
video_bytes = video_file.read()
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
display_video_with_autoplay(video_cols[i], video_base64)
os.remove(output_path)
for i, eye_type in enumerate(output_frames.keys()):
out_frames = output_frames[eye_type]
height, width, _ = out_frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*codec)
fps = 10.0
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
for diameter in predicted_diameters[eye_type]:
frame = np.zeros((height, width, 3), dtype=np.uint8)
text = f"{diameter:.2f}"
frame = overlay_text_on_frame(frame, text)
out.write(frame)
out.release()
with open(output_path, "rb") as video_file:
video_bytes = video_file.read()
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
display_video_with_autoplay(video_cols[i], video_base64)
os.remove(output_path)
return predicted_diameters