Spaces:
Running
Running
vijul.shah
commited on
Commit
·
f0adec0
1
Parent(s):
0f2d9f6
Added video upload support. Need to optimize and add new features
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ import matplotlib.pyplot as plt
|
|
9 |
import numpy as np
|
10 |
import streamlit as st
|
11 |
import torch
|
|
|
12 |
from PIL import Image
|
13 |
from torchvision import models
|
14 |
from torchvision.transforms.functional import normalize, resize, to_pil_image, to_tensor
|
@@ -62,6 +63,53 @@ def _load_model(model_configs, device="cpu"):
|
|
62 |
return model
|
63 |
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
def main():
|
66 |
# Wide mode
|
67 |
st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")
|
@@ -84,37 +132,69 @@ def main():
|
|
84 |
st.set_option("deprecation.showfileUploaderEncoding", False)
|
85 |
# Choose your own image
|
86 |
uploaded_file = st.sidebar.file_uploader(
|
87 |
-
"Upload Image", type=["png", "jpeg", "jpg"]
|
88 |
)
|
89 |
if uploaded_file is not None:
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
if
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
max_size[
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
st.sidebar.title("Setup")
|
120 |
|
@@ -170,196 +250,182 @@ def main():
|
|
170 |
|
171 |
else:
|
172 |
with st.spinner("Analyzing..."):
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
"method": upscale_method_or_model,
|
178 |
-
"params": {"upscale": upscale},
|
179 |
-
}
|
180 |
-
config_file = {
|
181 |
-
"sr_configs": sr_configs,
|
182 |
-
"feature_extraction_configs": {
|
183 |
-
"blink_detection": False,
|
184 |
-
"upscale": upscale,
|
185 |
-
"extraction_library": "mediapipe",
|
186 |
-
},
|
187 |
-
}
|
188 |
-
|
189 |
-
img = np.array(input_img)
|
190 |
-
# img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
191 |
-
# if img.shape[0] > max_size or img.shape[1] > max_size:
|
192 |
-
# img = cv2.resize(img, (max_size, max_size))
|
193 |
-
|
194 |
-
ds_results = EyeDentityDatasetCreation(
|
195 |
-
feature_extraction_configs=config_file[
|
196 |
-
"feature_extraction_configs"
|
197 |
-
],
|
198 |
-
sr_configs=config_file["sr_configs"],
|
199 |
-
)(img)
|
200 |
-
# if ds_results is not None:
|
201 |
-
# print("ds_results = ", ds_results.keys())
|
202 |
-
|
203 |
-
preprocess_steps = [
|
204 |
-
transforms.ToTensor(),
|
205 |
-
transforms.Resize(
|
206 |
-
[32, 64],
|
207 |
-
# interpolation=transforms.InterpolationMode.BILINEAR,
|
208 |
-
interpolation=transforms.InterpolationMode.BICUBIC,
|
209 |
-
antialias=True,
|
210 |
-
),
|
211 |
-
]
|
212 |
-
preprocess_function = transforms.Compose(preprocess_steps)
|
213 |
-
|
214 |
-
left_eye = None
|
215 |
-
right_eye = None
|
216 |
-
|
217 |
-
if ds_results is None:
|
218 |
-
# print("type of input_img = ", type(input_img))
|
219 |
-
input_img = preprocess_function(input_img)
|
220 |
-
input_img = input_img.unsqueeze(0)
|
221 |
-
if pupil_selection == "left_pupil":
|
222 |
-
left_eye = input_img
|
223 |
-
elif pupil_selection == "right_pupil":
|
224 |
-
right_eye = input_img
|
225 |
else:
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
"
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
# print("type of left_eye = ", type(left_eye))
|
239 |
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
# print("type of left_eye = ", type(left_eye))
|
242 |
-
|
243 |
-
left_eye = left_eye.unsqueeze(0)
|
244 |
-
if (
|
245 |
-
"right_eye" in ds_results["eyes"].keys()
|
246 |
-
and ds_results["eyes"]["right_eye"] is not None
|
247 |
-
):
|
248 |
-
right_eye = ds_results["eyes"]["right_eye"]
|
249 |
# print("type of right_eye = ", type(right_eye))
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
# print("type of right_eye = ", type(right_eye))
|
252 |
|
253 |
-
|
254 |
-
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
input_img = input_img.unsqueeze(0)
|
261 |
-
if pupil_selection == "left_pupil":
|
262 |
-
left_eye = input_img
|
263 |
elif pupil_selection == "right_pupil":
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
"
|
285 |
-
|
286 |
-
"
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
299 |
)
|
|
|
300 |
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
|
|
|
|
314 |
)
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
)
|
333 |
-
|
334 |
-
# Convert input image and activation map to PIL images
|
335 |
-
input_image_pil = to_pil_image(input_img.squeeze(0))
|
336 |
-
activation_map_pil = to_pil_image(activation_map, mode="F")
|
337 |
-
|
338 |
-
# Create the overlayed CAM result
|
339 |
-
result = overlay_mask(
|
340 |
-
input_image_pil,
|
341 |
-
activation_map_pil,
|
342 |
-
alpha=0.5,
|
343 |
-
)
|
344 |
-
|
345 |
-
# Create a subplot with 1 row and 2 columns
|
346 |
-
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
|
347 |
-
|
348 |
-
# Display the input image
|
349 |
-
axs[0].imshow(input_image_pil)
|
350 |
-
axs[0].axis("off")
|
351 |
-
axs[0].set_title("Input Image")
|
352 |
-
|
353 |
-
# Display the overlayed CAM result
|
354 |
-
axs[1].imshow(result)
|
355 |
-
axs[1].axis("off")
|
356 |
-
axs[1].set_title("Overlayed CAM")
|
357 |
-
|
358 |
-
# Display the plot
|
359 |
-
cols[-1].pyplot(fig)
|
360 |
-
cols[-1].text(
|
361 |
-
f"eye image size: {input_img.shape[-1]} x {input_img.shape[-2]}"
|
362 |
-
)
|
363 |
|
364 |
|
365 |
if __name__ == "__main__":
|
|
|
9 |
import numpy as np
|
10 |
import streamlit as st
|
11 |
import torch
|
12 |
+
import tempfile
|
13 |
from PIL import Image
|
14 |
from torchvision import models
|
15 |
from torchvision.transforms.functional import normalize, resize, to_pil_image, to_tensor
|
|
|
63 |
return model
|
64 |
|
65 |
|
66 |
+
def extract_frames(video_path):
|
67 |
+
vidcap = cv2.VideoCapture(video_path)
|
68 |
+
frames = []
|
69 |
+
success, image = vidcap.read()
|
70 |
+
count = 0
|
71 |
+
while success:
|
72 |
+
# Convert the frame to RGB (cv2 uses BGR by default)
|
73 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
74 |
+
frames.append(image_rgb)
|
75 |
+
success, image = vidcap.read()
|
76 |
+
count += 1
|
77 |
+
vidcap.release()
|
78 |
+
return frames
|
79 |
+
|
80 |
+
|
81 |
+
# Function to check if a file is an image
|
82 |
+
def is_image(file_extension):
|
83 |
+
return file_extension.lower() in ["png", "jpeg", "jpg"]
|
84 |
+
|
85 |
+
|
86 |
+
# Function to check if a file is a video
|
87 |
+
def is_video(file_extension):
|
88 |
+
return file_extension.lower() in ["mp4", "avi", "mov", "mkv", "webm"]
|
89 |
+
|
90 |
+
|
91 |
+
def resize_frame(frame, max_width, max_height):
|
92 |
+
image = Image.fromarray(frame)
|
93 |
+
original_size = image.size
|
94 |
+
|
95 |
+
# Resize the frame similarly to the image resizing logic
|
96 |
+
if original_size[0] == original_size[1] and original_size[0] >= 256:
|
97 |
+
max_size = (256, 256)
|
98 |
+
else:
|
99 |
+
max_size = list(original_size)
|
100 |
+
if original_size[0] >= 640:
|
101 |
+
max_size[0] = 640
|
102 |
+
elif original_size[0] < 64:
|
103 |
+
max_size[0] = 64
|
104 |
+
if original_size[1] >= 480:
|
105 |
+
max_size[1] = 480
|
106 |
+
elif original_size[1] < 32:
|
107 |
+
max_size[1] = 32
|
108 |
+
|
109 |
+
image.thumbnail(max_size)
|
110 |
+
return image
|
111 |
+
|
112 |
+
|
113 |
def main():
|
114 |
# Wide mode
|
115 |
st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")
|
|
|
132 |
st.set_option("deprecation.showfileUploaderEncoding", False)
|
133 |
# Choose your own image
|
134 |
uploaded_file = st.sidebar.file_uploader(
|
135 |
+
"Upload Image or Video", type=["png", "jpeg", "jpg", "mp4", "avi", "mov", "mkv", "webm"]
|
136 |
)
|
137 |
if uploaded_file is not None:
|
138 |
+
# Get file extension
|
139 |
+
file_extension = uploaded_file.name.split(".")[-1]
|
140 |
+
input_imgs = []
|
141 |
+
|
142 |
+
if is_image(file_extension):
|
143 |
+
input_img = Image.open(BytesIO(uploaded_file.read()), mode="r").convert("RGB")
|
144 |
+
# print("input_img before = ", input_img.size)
|
145 |
+
max_size = [input_img.size[0], input_img.size[1]]
|
146 |
+
cols[0].text(f"Input Image: {max_size[0]} x {max_size[1]}")
|
147 |
+
if input_img.size[0] == input_img.size[1] and input_img.size[0] >= 256:
|
148 |
+
max_size[0] = 256
|
149 |
+
max_size[1] = 256
|
150 |
+
else:
|
151 |
+
if input_img.size[0] >= 640:
|
152 |
+
max_size[0] = 640
|
153 |
+
elif input_img.size[0] < 64:
|
154 |
+
max_size[0] = 64
|
155 |
+
if input_img.size[1] >= 480:
|
156 |
+
max_size[1] = 480
|
157 |
+
elif input_img.size[1] < 32:
|
158 |
+
max_size[1] = 32
|
159 |
+
input_img.thumbnail((max_size[0], max_size[1])) # Bicubic resampling
|
160 |
+
input_imgs.append(input_img)
|
161 |
+
# print("input_img after = ", input_img.size)
|
162 |
+
# cols[0].image(input_img)
|
163 |
+
fig0, axs0 = plt.subplots(1, 1, figsize=(10, 10))
|
164 |
+
# Display the input image
|
165 |
+
axs0.imshow(input_imgs[0])
|
166 |
+
axs0.axis("off")
|
167 |
+
axs0.set_title("Input Image")
|
168 |
+
|
169 |
+
# Display the plot
|
170 |
+
cols[0].pyplot(fig0)
|
171 |
+
cols[0].text(f"Input Image Resized: {max_size[0]} x {max_size[1]}")
|
172 |
+
|
173 |
+
# TODO: show the face features extracted from the image under 'input image' column
|
174 |
+
elif is_video(file_extension):
|
175 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
176 |
+
tfile.write(uploaded_file.read())
|
177 |
+
video_path = tfile.name
|
178 |
+
|
179 |
+
# Extract frames from the video
|
180 |
+
frames = extract_frames(video_path)
|
181 |
+
print(f"Extracted {len(frames)} frames from the video")
|
182 |
+
|
183 |
+
# Process the frames
|
184 |
+
for i, frame in enumerate(frames):
|
185 |
+
input_imgs.append(resize_frame(frame, 640, 480))
|
186 |
+
|
187 |
+
os.remove(video_path)
|
188 |
+
|
189 |
+
fig0, axs0 = plt.subplots(1, 1, figsize=(10, 10))
|
190 |
+
# Display the input image
|
191 |
+
axs0.imshow(input_imgs[0])
|
192 |
+
axs0.axis("off")
|
193 |
+
axs0.set_title("Input Image")
|
194 |
+
|
195 |
+
# Display the plot
|
196 |
+
cols[0].pyplot(fig0)
|
197 |
+
# cols[0].text(f"Input Image Resized: {max_size[0]} x {max_size[1]}")
|
198 |
|
199 |
st.sidebar.title("Setup")
|
200 |
|
|
|
250 |
|
251 |
else:
|
252 |
with st.spinner("Analyzing..."):
|
253 |
+
model = None
|
254 |
+
for input_img in input_imgs:
|
255 |
+
if upscale == "-":
|
256 |
+
sr_configs = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
else:
|
258 |
+
sr_configs = {
|
259 |
+
"method": upscale_method_or_model,
|
260 |
+
"params": {"upscale": upscale},
|
261 |
+
}
|
262 |
+
config_file = {
|
263 |
+
"sr_configs": sr_configs,
|
264 |
+
"feature_extraction_configs": {
|
265 |
+
"blink_detection": False,
|
266 |
+
"upscale": upscale,
|
267 |
+
"extraction_library": "mediapipe",
|
268 |
+
},
|
269 |
+
}
|
|
|
270 |
|
271 |
+
img = np.array(input_img)
|
272 |
+
# img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
273 |
+
# if img.shape[0] > max_size or img.shape[1] > max_size:
|
274 |
+
# img = cv2.resize(img, (max_size, max_size))
|
275 |
+
|
276 |
+
ds_results = EyeDentityDatasetCreation(
|
277 |
+
feature_extraction_configs=config_file["feature_extraction_configs"],
|
278 |
+
sr_configs=config_file["sr_configs"],
|
279 |
+
)(img)
|
280 |
+
# if ds_results is not None:
|
281 |
+
# print("ds_results = ", ds_results.keys())
|
282 |
+
|
283 |
+
preprocess_steps = [
|
284 |
+
transforms.ToTensor(),
|
285 |
+
transforms.Resize(
|
286 |
+
[32, 64],
|
287 |
+
# interpolation=transforms.InterpolationMode.BILINEAR,
|
288 |
+
interpolation=transforms.InterpolationMode.BICUBIC,
|
289 |
+
antialias=True,
|
290 |
+
),
|
291 |
+
]
|
292 |
+
preprocess_function = transforms.Compose(preprocess_steps)
|
293 |
+
|
294 |
+
left_eye = None
|
295 |
+
right_eye = None
|
296 |
+
|
297 |
+
if ds_results is None:
|
298 |
+
# print("type of input_img = ", type(input_img))
|
299 |
+
input_img = preprocess_function(input_img)
|
300 |
+
input_img = input_img.unsqueeze(0)
|
301 |
+
if pupil_selection == "left_pupil":
|
302 |
+
left_eye = input_img
|
303 |
+
elif pupil_selection == "right_pupil":
|
304 |
+
right_eye = input_img
|
305 |
+
else:
|
306 |
+
left_eye = input_img
|
307 |
+
right_eye = input_img
|
308 |
# print("type of left_eye = ", type(left_eye))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
# print("type of right_eye = ", type(right_eye))
|
310 |
+
elif "eyes" in ds_results.keys():
|
311 |
+
if "left_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["left_eye"] is not None:
|
312 |
+
left_eye = ds_results["eyes"]["left_eye"]
|
313 |
+
# print("type of left_eye = ", type(left_eye))
|
314 |
+
left_eye = to_pil_image(left_eye).convert("RGB")
|
315 |
+
# print("type of left_eye = ", type(left_eye))
|
316 |
+
|
317 |
+
left_eye = preprocess_function(left_eye)
|
318 |
+
# print("type of left_eye = ", type(left_eye))
|
319 |
+
|
320 |
+
left_eye = left_eye.unsqueeze(0)
|
321 |
+
if "right_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["right_eye"] is not None:
|
322 |
+
right_eye = ds_results["eyes"]["right_eye"]
|
323 |
+
# print("type of right_eye = ", type(right_eye))
|
324 |
+
right_eye = to_pil_image(right_eye).convert("RGB")
|
325 |
+
# print("type of right_eye = ", type(right_eye))
|
326 |
+
|
327 |
+
right_eye = preprocess_function(right_eye)
|
328 |
+
# print("type of right_eye = ", type(right_eye))
|
329 |
+
|
330 |
+
right_eye = right_eye.unsqueeze(0)
|
331 |
+
else:
|
332 |
+
# print("type of input_img = ", type(input_img))
|
333 |
+
input_img = preprocess_function(input_img)
|
334 |
+
input_img = input_img.unsqueeze(0)
|
335 |
+
if pupil_selection == "left_pupil":
|
336 |
+
left_eye = input_img
|
337 |
+
elif pupil_selection == "right_pupil":
|
338 |
+
right_eye = input_img
|
339 |
+
else:
|
340 |
+
left_eye = input_img
|
341 |
+
right_eye = input_img
|
342 |
+
# print("type of left_eye = ", type(left_eye))
|
343 |
# print("type of right_eye = ", type(right_eye))
|
344 |
|
345 |
+
# print("left_eye = ", left_eye.shape)
|
346 |
+
# print("right_eye = ", right_eye.shape)
|
347 |
|
348 |
+
if pupil_selection == "-":
|
349 |
+
selected_eyes = ["left_eye", "right_eye"]
|
350 |
+
elif pupil_selection == "left_pupil":
|
351 |
+
selected_eyes = ["left_eye"]
|
|
|
|
|
|
|
352 |
elif pupil_selection == "right_pupil":
|
353 |
+
selected_eyes = ["right_eye"]
|
354 |
+
|
355 |
+
for eye_type in selected_eyes:
|
356 |
+
|
357 |
+
if model is None:
|
358 |
+
model_configs = {
|
359 |
+
"model_path": root_path + f"/pre_trained_models/{tv_model}/{eye_type}.pt",
|
360 |
+
"registered_model_name": tv_model,
|
361 |
+
"num_classes": 1,
|
362 |
+
}
|
363 |
+
registered_model_name = model_configs["registered_model_name"]
|
364 |
+
model = _load_model(model_configs)
|
365 |
+
|
366 |
+
if registered_model_name == "ResNet18":
|
367 |
+
target_layer = model.resnet.layer4[-1].conv2
|
368 |
+
elif registered_model_name == "ResNet50":
|
369 |
+
target_layer = model.resnet.layer4[-1].conv3
|
370 |
+
else:
|
371 |
+
raise Exception(f"No target layer available for selected model: {registered_model_name}")
|
372 |
+
|
373 |
+
if left_eye is not None and eye_type == "left_eye":
|
374 |
+
input_img = left_eye
|
375 |
+
elif right_eye is not None and eye_type == "right_eye":
|
376 |
+
input_img = right_eye
|
377 |
+
else:
|
378 |
+
raise Exception("Wrong Data")
|
379 |
+
|
380 |
+
if cam_method is not None:
|
381 |
+
cam_extractor = torchcam_methods.__dict__[cam_method](
|
382 |
+
model,
|
383 |
+
target_layer=target_layer,
|
384 |
+
fc_layer=model.resnet.fc,
|
385 |
+
input_shape=input_img.shape,
|
386 |
+
)
|
387 |
+
|
388 |
+
# with torch.no_grad():
|
389 |
+
out = model(input_img)
|
390 |
+
cols[-1].markdown(
|
391 |
+
f"<h3>Predicted Pupil Diameter: {out[0].item():.2f} mm</h3>",
|
392 |
+
unsafe_allow_html=True,
|
393 |
)
|
394 |
+
# cols[-1].text(f"Predicted Pupil Diameter: {out[0].item():.2f}")
|
395 |
|
396 |
+
# Retrieve the CAM
|
397 |
+
act_maps = cam_extractor(0, out)
|
398 |
+
|
399 |
+
# Fuse the CAMs if there are several
|
400 |
+
activation_map = act_maps[0] if len(act_maps) == 1 else cam_extractor.fuse_cams(act_maps)
|
401 |
+
|
402 |
+
# Convert input image and activation map to PIL images
|
403 |
+
input_image_pil = to_pil_image(input_img.squeeze(0))
|
404 |
+
activation_map_pil = to_pil_image(activation_map, mode="F")
|
405 |
+
|
406 |
+
# Create the overlayed CAM result
|
407 |
+
result = overlay_mask(
|
408 |
+
input_image_pil,
|
409 |
+
activation_map_pil,
|
410 |
+
alpha=0.5,
|
411 |
)
|
412 |
|
413 |
+
# Create a subplot with 1 row and 2 columns
|
414 |
+
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
|
415 |
+
|
416 |
+
# Display the input image
|
417 |
+
axs[0].imshow(input_image_pil)
|
418 |
+
axs[0].axis("off")
|
419 |
+
axs[0].set_title("Input Image")
|
420 |
+
|
421 |
+
# Display the overlayed CAM result
|
422 |
+
axs[1].imshow(result)
|
423 |
+
axs[1].axis("off")
|
424 |
+
axs[1].set_title("Overlayed CAM")
|
425 |
+
|
426 |
+
# Display the plot
|
427 |
+
cols[-1].pyplot(fig)
|
428 |
+
cols[-1].text(f"eye image size: {input_img.shape[-1]} x {input_img.shape[-2]}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
|
430 |
|
431 |
if __name__ == "__main__":
|