import base64 from io import BytesIO import os import sys import cv2 from matplotlib import pyplot as plt import numpy as np import streamlit as st import torch import tempfile from PIL import Image from torchvision.transforms.functional import to_pil_image from torchvision import transforms from torchcam.methods import CAM from torchcam import methods as torchcam_methods from torchcam.utils import overlay_mask import os.path as osp root_path = osp.abspath(osp.join(__file__, osp.pardir)) sys.path.append(root_path) from preprocessing.dataset_creation import EyeDentityDatasetCreation from utils import get_model @torch.no_grad() def load_model(model_configs, device="cpu"): """Loads the pre-trained model.""" model_path = os.path.join(root_path, model_configs["model_path"]) model_dict = torch.load(model_path, map_location=device) model = get_model(model_configs=model_configs) model.load_state_dict(model_dict) model = model.to(device).eval() return model def extract_frames(video_path): """Extracts frames from a video file.""" vidcap = cv2.VideoCapture(video_path) frames = [] success, image = vidcap.read() while success: image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) frames.append(image_rgb) success, image = vidcap.read() vidcap.release() return frames def resize_frame(image, max_width=640, max_height=480): if not isinstance(image, Image.Image): image = Image.fromarray(image) original_size = image.size # Resize the frame similarly to the image resizing logic if original_size[0] == original_size[1] and original_size[0] >= 256: max_size = (256, 256) else: max_size = list(original_size) if original_size[0] >= max_width: max_size[0] = max_width elif original_size[0] < 64: max_size[0] = 64 if original_size[1] >= max_height: max_size[1] = max_height elif original_size[1] < 32: max_size[1] = 32 image.thumbnail(max_size) # image = image.resize(max_size) return image def is_image(file_extension): """Checks if the file is an image.""" return file_extension.lower() in ["png", "jpeg", "jpg"] def is_video(file_extension): """Checks if the file is a video.""" return file_extension.lower() in ["mp4", "avi", "mov", "mkv", "webm"] def get_codec_and_extension(file_format): """Return codec and file extension based on the format.""" if file_format == "mp4": return "H264", ".mp4" elif file_format == "avi": return "MJPG", ".avi" elif file_format == "webm": return "VP80", ".webm" else: return "MJPG", ".avi" def display_results(input_image, cam_frame, pupil_diameter, cols): """Displays the input image and overlayed CAM result.""" fig, axs = plt.subplots(1, 2, figsize=(10, 5)) axs[0].imshow(input_image) axs[0].axis("off") axs[0].set_title("Input Image") axs[1].imshow(cam_frame) axs[1].axis("off") axs[1].set_title("Overlayed CAM") cols[-1].pyplot(fig) cols[-1].text(f"Pupil Diameter: {pupil_diameter:.2f} mm") def preprocess_image(input_img, max_size=(256, 256)): """Resizes and preprocesses an image.""" input_img.thumbnail(max_size) preprocess_steps = [ transforms.ToTensor(), transforms.Resize([32, 64], interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), ] return transforms.Compose(preprocess_steps)(input_img).unsqueeze(0) def overlay_text_on_frame(frame, text, position=(16, 20)): """Write text on the image frame using OpenCV.""" return cv2.putText(frame, text, position, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, cv2.LINE_AA) def get_configs(blink_detection=False): upscale = "-" upscale_method_or_model = "-" if upscale == "-": sr_configs = None else: sr_configs = { "method": upscale_method_or_model, "params": {"upscale": upscale}, } config_file = { "sr_configs": sr_configs, "feature_extraction_configs": { "blink_detection": blink_detection, "upscale": upscale, "extraction_library": "mediapipe", }, } return config_file def setup(cols, pupil_selection, tv_model, output_path): left_pupil_model = None left_pupil_cam_extractor = None right_pupil_model = None right_pupil_cam_extractor = None output_frames = {} input_frames = {} predicted_diameters = {} pred_diameters_frames = {} if pupil_selection == "both": selected_eyes = ["left_eye", "right_eye"] elif pupil_selection == "left_pupil": selected_eyes = ["left_eye"] elif pupil_selection == "right_pupil": selected_eyes = ["right_eye"] for i, eye_type in enumerate(selected_eyes): model_configs = { "model_path": root_path + f"/pre_trained_models/{tv_model}/{eye_type}.pt", "registered_model_name": tv_model, "num_classes": 1, } if eye_type == "left_eye": left_pupil_model = load_model(model_configs) left_pupil_cam_extractor = None output_frames[eye_type] = [] input_frames[eye_type] = [] predicted_diameters[eye_type] = [] pred_diameters_frames[eye_type] = [] else: right_pupil_model = load_model(model_configs) right_pupil_cam_extractor = None output_frames[eye_type] = [] input_frames[eye_type] = [] predicted_diameters[eye_type] = [] pred_diameters_frames[eye_type] = [] video_placeholders = {} if output_path: video_cols = cols[1].columns(len(input_frames.keys())) for i, eye_type in enumerate(list(input_frames.keys())): video_placeholders[eye_type] = video_cols[i].empty() return ( selected_eyes, input_frames, output_frames, predicted_diameters, pred_diameters_frames, video_placeholders, left_pupil_model, left_pupil_cam_extractor, right_pupil_model, right_pupil_cam_extractor, ) def process_frames( cols, input_imgs, tv_model, pupil_selection, cam_method, output_path=None, codec=None, blink_detection=False ): config_file = get_configs(blink_detection) face_frames = [] ( selected_eyes, input_frames, output_frames, predicted_diameters, pred_diameters_frames, video_placeholders, left_pupil_model, left_pupil_cam_extractor, right_pupil_model, right_pupil_cam_extractor, ) = setup(cols, pupil_selection, tv_model, output_path) ds_creation = EyeDentityDatasetCreation( feature_extraction_configs=config_file["feature_extraction_configs"], sr_configs=config_file["sr_configs"], ) preprocess_steps = [ transforms.ToTensor(), transforms.Resize( [32, 64], interpolation=transforms.InterpolationMode.BICUBIC, antialias=True, ), ] preprocess_function = transforms.Compose(preprocess_steps) eyes_ratios = [] for idx, input_img in enumerate(input_imgs): img = np.array(input_img) ds_results = ds_creation(img) left_eye = None right_eye = None blinked = False eyes_ratio = None if ds_results is not None and "face" in ds_results: face_img = to_pil_image(ds_results["face"]) has_face = True else: face_img = to_pil_image(np.zeros((256, 256, 3), dtype=np.uint8)) has_face = False face_frames.append({"has_face": has_face, "img": face_img}) if ds_results is not None and "eyes" in ds_results.keys(): blinked = ds_results["eyes"]["blinked"] eyes_ratio = ds_results["eyes"]["eyes_ratio"] if eyes_ratio is not None: eyes_ratios.append(eyes_ratio) if "left_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["left_eye"] is not None: left_eye = ds_results["eyes"]["left_eye"] left_eye = to_pil_image(left_eye).convert("RGB") left_eye = preprocess_function(left_eye) left_eye = left_eye.unsqueeze(0) if "right_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["right_eye"] is not None: right_eye = ds_results["eyes"]["right_eye"] right_eye = to_pil_image(right_eye).convert("RGB") right_eye = preprocess_function(right_eye) right_eye = right_eye.unsqueeze(0) else: input_img = preprocess_function(input_img) input_img = input_img.unsqueeze(0) if pupil_selection == "left_pupil": left_eye = input_img elif pupil_selection == "right_pupil": right_eye = input_img else: left_eye = input_img right_eye = input_img for i, eye_type in enumerate(selected_eyes): if blinked: if left_eye is not None and eye_type == "left_eye": _, height, width = left_eye.squeeze(0).shape input_image_pil = to_pil_image(left_eye.squeeze(0)) elif right_eye is not None and eye_type == "right_eye": _, height, width = right_eye.squeeze(0).shape input_image_pil = to_pil_image(right_eye.squeeze(0)) input_img_np = np.array(input_image_pil) zeros_img = to_pil_image(np.zeros((height, width, 3), dtype=np.uint8)) output_img_np = overlay_text_on_frame(np.array(zeros_img), "blink") predicted_diameter = "blink" else: if left_eye is not None and eye_type == "left_eye": if left_pupil_cam_extractor is None: if tv_model == "ResNet18": target_layer = left_pupil_model.resnet.layer4[-1].conv2 elif tv_model == "ResNet50": target_layer = left_pupil_model.resnet.layer4[-1].conv3 else: raise Exception(f"No target layer available for selected model: {tv_model}") left_pupil_cam_extractor = torchcam_methods.__dict__[cam_method]( left_pupil_model, target_layer=target_layer, fc_layer=left_pupil_model.resnet.fc, input_shape=left_eye.shape, ) output = left_pupil_model(left_eye) predicted_diameter = output[0].item() act_maps = left_pupil_cam_extractor(0, output) activation_map = act_maps[0] if len(act_maps) == 1 else left_pupil_cam_extractor.fuse_cams(act_maps) input_image_pil = to_pil_image(left_eye.squeeze(0)) elif right_eye is not None and eye_type == "right_eye": if right_pupil_cam_extractor is None: if tv_model == "ResNet18": target_layer = right_pupil_model.resnet.layer4[-1].conv2 elif tv_model == "ResNet50": target_layer = right_pupil_model.resnet.layer4[-1].conv3 else: raise Exception(f"No target layer available for selected model: {tv_model}") right_pupil_cam_extractor = torchcam_methods.__dict__[cam_method]( right_pupil_model, target_layer=target_layer, fc_layer=right_pupil_model.resnet.fc, input_shape=right_eye.shape, ) output = right_pupil_model(right_eye) predicted_diameter = output[0].item() act_maps = right_pupil_cam_extractor(0, output) activation_map = ( act_maps[0] if len(act_maps) == 1 else right_pupil_cam_extractor.fuse_cams(act_maps) ) input_image_pil = to_pil_image(right_eye.squeeze(0)) # Create CAM overlay activation_map_pil = to_pil_image(activation_map, mode="F") result = overlay_mask(input_image_pil, activation_map_pil, alpha=0.5) input_img_np = np.array(input_image_pil) output_img_np = np.array(result) # Add frame and predicted diameter to lists input_frames[eye_type].append(input_img_np) output_frames[eye_type].append(output_img_np) predicted_diameters[eye_type].append(predicted_diameter) if output_path: height, width, _ = output_img_np.shape frame = np.zeros((height, width, 3), dtype=np.uint8) if not isinstance(predicted_diameter, str): text = f"{predicted_diameter:.2f}" else: text = predicted_diameter frame = overlay_text_on_frame(frame, text) pred_diameters_frames[eye_type].append(frame) combined_frame = np.vstack((input_img_np, output_img_np, frame)) video_placeholders[eye_type].image(combined_frame, use_column_width=True) st.session_state.current_frame = idx + 1 txt = f"
Number of Frames Processed: {st.session_state.current_frame} / {st.session_state.total_frames}
" st.session_state.frame_placeholder.markdown(txt, unsafe_allow_html=True) if output_path: combine_and_show_frames( input_frames, output_frames, pred_diameters_frames, output_path, codec, video_placeholders ) return input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios # Function to display video with autoplay and loop def display_video_with_autoplay(video_col, video_path): video_html = f""" """ video_col.markdown(video_html, unsafe_allow_html=True) def process_video(cols, video_frames, tv_model, pupil_selection, output_path, cam_method, blink_detection=False): resized_frames = [] for i, frame in enumerate(video_frames): input_img = resize_frame(frame, max_width=640, max_height=480) resized_frames.append(input_img) file_format = output_path.split(".")[-1] codec, extension = get_codec_and_extension(file_format) input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios = process_frames( cols, resized_frames, tv_model, pupil_selection, cam_method, output_path, codec, blink_detection ) return input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios # Function to convert string values to float or None def convert_diameter(value): try: return float(value) except (ValueError, TypeError): return None # Return None if conversion fails def combine_and_show_frames(input_frames, cam_frames, pred_diameters_frames, output_path, codec, video_cols): # Assuming all frames have the same keys (eye types) eye_types = input_frames.keys() for i, eye_type in enumerate(eye_types): in_frames = input_frames[eye_type] cam_out_frames = cam_frames[eye_type] pred_diameters_text_frames = pred_diameters_frames[eye_type] # Get frame properties (assuming all frames have the same dimensions) height, width, _ = in_frames[0].shape fourcc = cv2.VideoWriter_fourcc(*codec) fps = 10.0 out = cv2.VideoWriter(output_path, fourcc, fps, (width, height * 3)) # Width is tripled for concatenation # Loop through each set of frames and concatenate them for j in range(len(in_frames)): input_frame = in_frames[j] cam_frame = cam_out_frames[j] pred_frame = pred_diameters_text_frames[j] # Convert frames to BGR if necessary input_frame_bgr = cv2.cvtColor(input_frame, cv2.COLOR_RGB2BGR) cam_frame_bgr = cv2.cvtColor(cam_frame, cv2.COLOR_RGB2BGR) pred_frame_bgr = cv2.cvtColor(pred_frame, cv2.COLOR_RGB2BGR) # Concatenate frames horizontally (input, cam, pred) combined_frame = np.vstack((input_frame_bgr, cam_frame_bgr, pred_frame_bgr)) # Write the combined frame to the video out.write(combined_frame) # Release the video writer out.release() # Read the video and encode it in base64 for displaying with open(output_path, "rb") as video_file: video_bytes = video_file.read() video_base64 = base64.b64encode(video_bytes).decode("utf-8") # Display the combined video display_video_with_autoplay(video_cols[eye_type], video_base64) # Clean up os.remove(output_path)