import base64 from io import BytesIO import io import os import sys import cv2 from matplotlib import pyplot as plt import numpy as np import pandas as pd import streamlit as st import torch import tempfile from PIL import Image from torchvision.transforms.functional import to_pil_image from torchvision import transforms from PIL import ImageOps import altair as alt import streamlit.components.v1 as components from torchcam.methods import CAM from torchcam import methods as torchcam_methods from torchcam.utils import overlay_mask import os.path as osp root_path = osp.abspath(osp.join(__file__, osp.pardir)) sys.path.append(root_path) from preprocessing.dataset_creation import EyeDentityDatasetCreation from utils import get_model CAM_METHODS = ["CAM"] # colors = ["#2ca02c", "#d62728", "#1f77b4", "#ff7f0e"] # Green, Red, Blue, Orange colors = ["#1f77b4", "#ff7f0e", "#636363"] # Blue, Orange, Gray @torch.no_grad() def load_model(model_configs, device="cpu"): """Loads the pre-trained model.""" model_path = os.path.join(root_path, model_configs["model_path"]) model_dict = torch.load(model_path, map_location=device) model = get_model(model_configs=model_configs) model.load_state_dict(model_dict) model = model.to(device).eval() return model def extract_frames(video_path): """Extracts frames from a video file.""" vidcap = cv2.VideoCapture(video_path) frames = [] success, image = vidcap.read() while success: image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) frames.append(image_rgb) success, image = vidcap.read() vidcap.release() return frames def resize_frame(image, max_width=640, max_height=480): if not isinstance(image, Image.Image): image = Image.fromarray(image) original_size = image.size # Resize the frame similarly to the image resizing logic if original_size[0] == original_size[1] and original_size[0] >= 256: max_size = (256, 256) else: max_size = list(original_size) if original_size[0] >= max_width: max_size[0] = max_width elif original_size[0] < 64: max_size[0] = 64 if original_size[1] >= max_height: max_size[1] = max_height elif original_size[1] < 32: max_size[1] = 32 image.thumbnail(max_size) # image = image.resize(max_size) return image def is_image(file_extension): """Checks if the file is an image.""" return file_extension.lower() in ["png", "jpeg", "jpg"] def is_video(file_extension): """Checks if the file is a video.""" return file_extension.lower() in ["mp4", "avi", "mov", "mkv", "webm"] def get_codec_and_extension(file_format): """Return codec and file extension based on the format.""" if file_format == "mp4": return "H264", ".mp4" elif file_format == "avi": return "MJPG", ".avi" elif file_format == "webm": return "VP80", ".webm" else: return "MJPG", ".avi" def display_results(input_image, cam_frame, pupil_diameter, cols): """Displays the input image and overlayed CAM result.""" fig, axs = plt.subplots(1, 2, figsize=(10, 5)) axs[0].imshow(input_image) axs[0].axis("off") axs[0].set_title("Input Image") axs[1].imshow(cam_frame) axs[1].axis("off") axs[1].set_title("Overlayed CAM") cols[-1].pyplot(fig) cols[-1].text(f"Pupil Diameter: {pupil_diameter:.2f} mm") def preprocess_image(input_img, max_size=(256, 256)): """Resizes and preprocesses an image.""" input_img.thumbnail(max_size) preprocess_steps = [ transforms.ToTensor(), transforms.Resize([32, 64], interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), ] return transforms.Compose(preprocess_steps)(input_img).unsqueeze(0) def overlay_text_on_frame(frame, text, position=(16, 20)): """Write text on the image frame using OpenCV.""" return cv2.putText(frame, text, position, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, cv2.LINE_AA) def get_configs(blink_detection=False): upscale = "-" upscale_method_or_model = "-" if upscale == "-": sr_configs = None else: sr_configs = { "method": upscale_method_or_model, "params": {"upscale": upscale}, } config_file = { "sr_configs": sr_configs, "feature_extraction_configs": { "blink_detection": blink_detection, "upscale": upscale, "extraction_library": "mediapipe", }, } return config_file def setup(cols, pupil_selection, tv_model, output_path): left_pupil_model = None left_pupil_cam_extractor = None right_pupil_model = None right_pupil_cam_extractor = None output_frames = {} input_frames = {} predicted_diameters = {} pred_diameters_frames = {} if pupil_selection == "both": selected_eyes = ["left_eye", "right_eye"] elif pupil_selection == "left_pupil": selected_eyes = ["left_eye"] elif pupil_selection == "right_pupil": selected_eyes = ["right_eye"] for i, eye_type in enumerate(selected_eyes): model_configs = { "model_path": root_path + f"/pre_trained_models/{tv_model}/{eye_type}.pt", "registered_model_name": tv_model, "num_classes": 1, } if eye_type == "left_eye": left_pupil_model = load_model(model_configs) left_pupil_cam_extractor = None output_frames[eye_type] = [] input_frames[eye_type] = [] predicted_diameters[eye_type] = [] pred_diameters_frames[eye_type] = [] else: right_pupil_model = load_model(model_configs) right_pupil_cam_extractor = None output_frames[eye_type] = [] input_frames[eye_type] = [] predicted_diameters[eye_type] = [] pred_diameters_frames[eye_type] = [] video_placeholders = {} if output_path: video_cols = cols[1].columns(len(input_frames.keys())) for i, eye_type in enumerate(list(input_frames.keys())): video_placeholders[eye_type] = video_cols[i].empty() return ( selected_eyes, input_frames, output_frames, predicted_diameters, pred_diameters_frames, video_placeholders, left_pupil_model, left_pupil_cam_extractor, right_pupil_model, right_pupil_cam_extractor, ) def process_frames( cols, input_imgs, tv_model, pupil_selection, cam_method, output_path=None, codec=None, blink_detection=False ): config_file = get_configs(blink_detection) face_frames = [] ( selected_eyes, input_frames, output_frames, predicted_diameters, pred_diameters_frames, video_placeholders, left_pupil_model, left_pupil_cam_extractor, right_pupil_model, right_pupil_cam_extractor, ) = setup(cols, pupil_selection, tv_model, output_path) ds_creation = EyeDentityDatasetCreation( feature_extraction_configs=config_file["feature_extraction_configs"], sr_configs=config_file["sr_configs"], ) preprocess_steps = [ transforms.Resize( [32, 64], interpolation=transforms.InterpolationMode.BICUBIC, antialias=True, ), transforms.ToTensor(), ] preprocess_function = transforms.Compose(preprocess_steps) eyes_ratios = [] for idx, input_img in enumerate(input_imgs): img = np.array(input_img) ds_results = ds_creation(img) left_eye = None right_eye = None blinked = False eyes_ratio = None if ds_results is not None and "face" in ds_results: face_img = to_pil_image(ds_results["face"]) has_face = True else: face_img = to_pil_image(np.zeros((256, 256, 3), dtype=np.uint8)) has_face = False face_frames.append({"has_face": has_face, "img": face_img}) if ds_results is not None and "eyes" in ds_results.keys(): blinked = ds_results["eyes"]["blinked"] eyes_ratio = ds_results["eyes"]["eyes_ratio"] if eyes_ratio is not None: eyes_ratios.append(eyes_ratio) if "left_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["left_eye"] is not None: left_eye = ds_results["eyes"]["left_eye"] left_eye = to_pil_image(left_eye).convert("RGB") left_eye = preprocess_function(left_eye) left_eye = left_eye.unsqueeze(0) if "right_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["right_eye"] is not None: right_eye = ds_results["eyes"]["right_eye"] right_eye = to_pil_image(right_eye).convert("RGB") right_eye = preprocess_function(right_eye) right_eye = right_eye.unsqueeze(0) else: input_img = preprocess_function(input_img) input_img = input_img.unsqueeze(0) if pupil_selection == "left_pupil": left_eye = input_img elif pupil_selection == "right_pupil": right_eye = input_img else: left_eye = input_img right_eye = input_img for i, eye_type in enumerate(selected_eyes): if blinked: if left_eye is not None and eye_type == "left_eye": _, height, width = left_eye.squeeze(0).shape input_image_pil = to_pil_image(left_eye.squeeze(0)) elif right_eye is not None and eye_type == "right_eye": _, height, width = right_eye.squeeze(0).shape input_image_pil = to_pil_image(right_eye.squeeze(0)) input_img_np = np.array(input_image_pil) zeros_img = to_pil_image(np.zeros((height, width, 3), dtype=np.uint8)) output_img_np = overlay_text_on_frame(np.array(zeros_img), "blink") predicted_diameter = "blink" else: if left_eye is not None and eye_type == "left_eye": if left_pupil_cam_extractor is None: if tv_model == "ResNet18": target_layer = left_pupil_model.resnet.layer4[-1].conv2 elif tv_model == "ResNet50": target_layer = left_pupil_model.resnet.layer4[-1].conv3 else: raise Exception(f"No target layer available for selected model: {tv_model}") left_pupil_cam_extractor = torchcam_methods.__dict__[cam_method]( left_pupil_model, target_layer=target_layer, fc_layer=left_pupil_model.resnet.fc, input_shape=left_eye.shape, ) output = left_pupil_model(left_eye) predicted_diameter = output[0].item() act_maps = left_pupil_cam_extractor(0, output) activation_map = act_maps[0] if len(act_maps) == 1 else left_pupil_cam_extractor.fuse_cams(act_maps) input_image_pil = to_pil_image(left_eye.squeeze(0)) elif right_eye is not None and eye_type == "right_eye": if right_pupil_cam_extractor is None: if tv_model == "ResNet18": target_layer = right_pupil_model.resnet.layer4[-1].conv2 elif tv_model == "ResNet50": target_layer = right_pupil_model.resnet.layer4[-1].conv3 else: raise Exception(f"No target layer available for selected model: {tv_model}") right_pupil_cam_extractor = torchcam_methods.__dict__[cam_method]( right_pupil_model, target_layer=target_layer, fc_layer=right_pupil_model.resnet.fc, input_shape=right_eye.shape, ) output = right_pupil_model(right_eye) predicted_diameter = output[0].item() act_maps = right_pupil_cam_extractor(0, output) activation_map = ( act_maps[0] if len(act_maps) == 1 else right_pupil_cam_extractor.fuse_cams(act_maps) ) input_image_pil = to_pil_image(right_eye.squeeze(0)) # Create CAM overlay activation_map_pil = to_pil_image(activation_map, mode="F") result = overlay_mask(input_image_pil, activation_map_pil, alpha=0.5) input_img_np = np.array(input_image_pil) output_img_np = np.array(result) # Add frame and predicted diameter to lists input_frames[eye_type].append(input_img_np) output_frames[eye_type].append(output_img_np) predicted_diameters[eye_type].append(predicted_diameter) if output_path: height, width, _ = output_img_np.shape frame = np.zeros((height, width, 3), dtype=np.uint8) if not isinstance(predicted_diameter, str): text = f"{predicted_diameter:.2f}" else: text = predicted_diameter frame = overlay_text_on_frame(frame, text) pred_diameters_frames[eye_type].append(frame) combined_frame = np.vstack((input_img_np, output_img_np, frame)) img_base64 = pil_image_to_base64(Image.fromarray(combined_frame)) image_html = f'
' video_placeholders[eye_type].markdown(image_html, unsafe_allow_html=True) # video_placeholders[eye_type].image(combined_frame, use_column_width=True) st.session_state.current_frame = idx + 1 txt = f"

Number of Frames Processed: {st.session_state.current_frame} / {st.session_state.total_frames}

" st.session_state.frame_placeholder.markdown(txt, unsafe_allow_html=True) if output_path: combine_and_show_frames( input_frames, output_frames, pred_diameters_frames, output_path, codec, video_placeholders ) return input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios # Function to display video with autoplay and loop def display_video_with_autoplay(video_col, video_path, width): video_html = f""" """ video_col.markdown(video_html, unsafe_allow_html=True) def process_video(cols, video_frames, tv_model, pupil_selection, output_path, cam_method, blink_detection=False): resized_frames = [] for i, frame in enumerate(video_frames): input_img = resize_frame(frame, max_width=640, max_height=480) resized_frames.append(input_img) file_format = output_path.split(".")[-1] codec, extension = get_codec_and_extension(file_format) input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios = process_frames( cols, resized_frames, tv_model, pupil_selection, cam_method, output_path, codec, blink_detection ) return input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios # Function to convert string values to float or None def convert_diameter(value): try: return float(value) except (ValueError, TypeError): return None # Return None if conversion fails def combine_and_show_frames(input_frames, cam_frames, pred_diameters_frames, output_path, codec, video_cols): # Assuming all frames have the same keys (eye types) eye_types = input_frames.keys() for i, eye_type in enumerate(eye_types): in_frames = input_frames[eye_type] cam_out_frames = cam_frames[eye_type] pred_diameters_text_frames = pred_diameters_frames[eye_type] # Get frame properties (assuming all frames have the same dimensions) height, width, _ = in_frames[0].shape fourcc = cv2.VideoWriter_fourcc(*codec) fps = 10.0 out = cv2.VideoWriter(output_path, fourcc, fps, (width, height * 3)) # Width is tripled for concatenation # Loop through each set of frames and concatenate them for j in range(len(in_frames)): input_frame = in_frames[j] cam_frame = cam_out_frames[j] pred_frame = pred_diameters_text_frames[j] # Convert frames to BGR if necessary input_frame_bgr = cv2.cvtColor(input_frame, cv2.COLOR_RGB2BGR) cam_frame_bgr = cv2.cvtColor(cam_frame, cv2.COLOR_RGB2BGR) pred_frame_bgr = cv2.cvtColor(pred_frame, cv2.COLOR_RGB2BGR) # Concatenate frames horizontally (input, cam, pred) combined_frame = np.vstack((input_frame_bgr, cam_frame_bgr, pred_frame_bgr)) # Write the combined frame to the video out.write(combined_frame) # Release the video writer out.release() # Read the video and encode it in base64 for displaying with open(output_path, "rb") as video_file: video_bytes = video_file.read() video_base64 = base64.b64encode(video_bytes).decode("utf-8") # Display the combined video display_video_with_autoplay(video_cols[eye_type], video_base64, width=len(video_cols) * 50) # Clean up os.remove(output_path) def set_input_image_on_ui(uploaded_file, cols): input_img = Image.open(BytesIO(uploaded_file.read())).convert("RGB") # NOTE: images taken with phone camera has an EXIF data field which often rotates images taken with the phone in a tilted position. PIL has a utility function that removes this data and β€˜uprights’ the image. input_img = ImageOps.exif_transpose(input_img) input_img = resize_frame(input_img, max_width=640, max_height=480) input_img = resize_frame(input_img, max_width=640, max_height=480) cols[0].image(input_img, use_column_width=True) st.session_state.total_frames = 1 return input_img def set_input_video_on_ui(uploaded_file, cols): tfile = tempfile.NamedTemporaryFile(delete=False) try: tfile.write(uploaded_file.read()) except Exception: tfile.write(uploaded_file) video_path = tfile.name video_frames = extract_frames(video_path) cols[0].video(video_path) st.session_state.total_frames = len(video_frames) return video_frames, video_path def set_frames_processed_count_placeholder(cols): st.session_state.current_frame = 0 st.session_state.frame_placeholder = cols[0].empty() txt = f"

Number of Frames Processed: {st.session_state.current_frame} / {st.session_state.total_frames}

" st.session_state.frame_placeholder.markdown(txt, unsafe_allow_html=True) def video_to_bytes(video_path): # Open the video file in binary mode and return the bytes with open(video_path, "rb") as video_file: return video_file.read() def display_video_library(video_folder="./sample_videos"): # Get all video files from the folder video_files = [f for f in os.listdir(video_folder) if f.endswith(".webm")] # Store the selected video path selected_video_path = None # Calculate number of columns (adjust based on your layout preferences) num_columns = 3 # For a grid of 3 videos per row # Display videos in a grid layout with 'Select' button for each video for i in range(0, len(video_files), num_columns): cols = st.columns(num_columns) for idx, video_file in enumerate(video_files[i : i + num_columns]): with cols[idx]: st.subheader(video_file.split(".")[0]) # Use the file name as the title video_path = os.path.join(video_folder, video_file) st.video(video_path) # Show the video if st.button(f"Select {video_file.split('.')[0]}", key=video_file, type="primary"): st.session_state.clear() st.toast("Scroll Down to see the input and predictions", icon="⏬") selected_video_path = video_path # Store the path of the selected video return selected_video_path def set_page_info_and_sidebar_info(): st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide") st.title("πŸ‘οΈ PupilSense πŸ‘οΈπŸ•΅οΈβ€β™‚οΈ") # st.markdown("Upload your own images or video **OR** select from our sample library below") st.markdown( "

" "Upload your own image πŸ–ΌοΈ or video 🎞️ OR select from our sample videos πŸ“š" "

", unsafe_allow_html=True, ) # video_path = display_video_library() show_demo_videos = st.sidebar.checkbox("Show Sample Videos", value=False) if show_demo_videos: video_path = display_video_library() else: video_path = None st.markdown("
", unsafe_allow_html=True) cols = st.columns((1, 1)) cols[0].header("Input") cols[-1].header("Prediction") st.markdown("
", unsafe_allow_html=True) LABEL_MAP = ["left_pupil", "right_pupil"] TV_MODELS = ["ResNet18", "ResNet50"] if "uploader_key" not in st.session_state: st.session_state["uploader_key"] = 1 st.sidebar.title("Upload Face πŸ‘¨β€πŸ¦± or Eye πŸ‘οΈ") uploaded_file = st.sidebar.file_uploader( "Upload Image or Video", type=["png", "jpeg", "jpg", "mp4", "avi", "mov", "mkv", "webm"], key=st.session_state["uploader_key"], ) if uploaded_file is not None: st.session_state["uploaded_file"] = uploaded_file st.sidebar.title("Setup") pupil_selection = st.sidebar.selectbox( "Pupil Selection", ["both"] + LABEL_MAP, help="Select left or right pupil OR both for diameter estimation" ) tv_model = st.sidebar.selectbox("Classification model", TV_MODELS, help="Supported Models") blink_detection = st.sidebar.checkbox("Detect Blinks", value=True) st.markdown("", unsafe_allow_html=True) if "uploaded_file" not in st.session_state: st.session_state["uploaded_file"] = None if "og_video_path" not in st.session_state: st.session_state["og_video_path"] = None if uploaded_file is None and video_path is not None: video_bytes = video_to_bytes(video_path) uploaded_file = video_bytes st.session_state["uploaded_file"] = uploaded_file st.session_state["og_video_path"] = video_path st.session_state["uploader_key"] = 0 return ( cols, st.session_state["og_video_path"], st.session_state["uploaded_file"], pupil_selection, tv_model, blink_detection, ) def pil_image_to_base64(img): """Convert a PIL Image to a base64 encoded string.""" buffered = io.BytesIO() img.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() return img_str def process_image_and_vizualize_data(cols, input_img, tv_model, pupil_selection, blink_detection): input_frames, output_frames, predicted_diameters, face_frames, eyes_ratios = process_frames( cols, [input_img], tv_model, pupil_selection, cam_method=CAM_METHODS[-1], blink_detection=blink_detection, ) # for ff in face_frames: # if ff["has_face"]: # cols[1].image(face_frames[0]["img"], use_column_width=True) input_frames_keys = input_frames.keys() video_cols = cols[1].columns(len(input_frames_keys)) for i, eye_type in enumerate(input_frames_keys): # Check the pupil_selection and set the width accordingly if pupil_selection == "both": video_cols[i].image(input_frames[eye_type][-1], use_column_width=True) else: img_base64 = pil_image_to_base64(Image.fromarray(input_frames[eye_type][-1])) image_html = f'
' video_cols[i].markdown(image_html, unsafe_allow_html=True) output_frames_keys = output_frames.keys() fig, axs = plt.subplots(1, len(output_frames_keys), figsize=(10, 5)) for i, eye_type in enumerate(output_frames_keys): height, width, c = output_frames[eye_type][0].shape frame = np.zeros((height, width, c), dtype=np.uint8) text = f"{predicted_diameters[eye_type][0]:.2f}" frame = overlay_text_on_frame(frame, text) if pupil_selection == "both": video_cols[i].image(output_frames[eye_type][-1], use_column_width=True) video_cols[i].image(frame, use_column_width=True) else: img_base64 = pil_image_to_base64(Image.fromarray(output_frames[eye_type][-1])) image_html = f'
' video_cols[i].markdown(image_html, unsafe_allow_html=True) img_base64 = pil_image_to_base64(Image.fromarray(frame)) image_html = f'
' video_cols[i].markdown(image_html, unsafe_allow_html=True) return None def plot_ears(eyes_ratios, eyes_df): eyes_df["EAR"] = eyes_ratios df = pd.DataFrame(eyes_ratios, columns=["EAR"]) df["Frame"] = range(1, len(eyes_ratios) + 1) # Create a frame column starting from 1 # Create an Altair chart for eyes_ratios line_chart = ( alt.Chart(df) .mark_line(color=colors[-1]) # Set color of the line .encode( x=alt.X("Frame:Q", title="Frame Number"), y=alt.Y("EAR:Q", title="Eyes Aspect Ratio"), tooltip=["Frame", "EAR"], ) # .properties(title="Eyes Aspect Ratios (EARs)") # .configure_axis(grid=True) ) points_chart = line_chart.mark_point(color=colors[-1], filled=True) # Create a horizontal rule at y=0.22 line1 = alt.Chart(pd.DataFrame({"y": [0.22]})).mark_rule(color="red").encode(y="y:Q") line2 = alt.Chart(pd.DataFrame({"y": [0.25]})).mark_rule(color="green").encode(y="y:Q") # Add text annotations for the lines text1 = ( alt.Chart(pd.DataFrame({"y": [0.22], "label": ["Definite Blinks (<=0.22)"]})) .mark_text(align="left", dx=100, dy=9, color="red", size=16) .encode(y="y:Q", text="label:N") ) text2 = ( alt.Chart(pd.DataFrame({"y": [0.25], "label": ["No Blinks (>=0.25)"]})) .mark_text(align="left", dx=-150, dy=-9, color="green", size=16) .encode(y="y:Q", text="label:N") ) # Add gray area text for the region between red and green lines gray_area_text = ( alt.Chart(pd.DataFrame({"y": [0.235], "label": ["Gray Area"]})) .mark_text(align="left", dx=0, dy=0, color="gray", size=16) .encode(y="y:Q", text="label:N") ) # Combine all elements: line chart, points, rules, and text annotations final_chart = ( line_chart.properties(title="Eyes Aspect Ratios (EARs)") + points_chart + line1 + line2 + text1 + text2 + gray_area_text ).interactive() # Configure axis properties at the chart level final_chart = final_chart.configure_axis(grid=True) # Display the Altair chart # st.subheader("Eyes Aspect Ratios (EARs)") st.altair_chart(final_chart, use_container_width=True) return eyes_df def plot_individual_charts(predicted_diameters, cols): # Iterate through categories and assign charts to columns for i, (category, values) in enumerate(predicted_diameters.items()): with cols[i]: # Directly use the column index # st.subheader(category) # Add a subheader for the category if "left" in category: selected_color = colors[0] elif "right" in category: selected_color = colors[1] else: selected_color = colors[i] # Convert values to numeric, replacing non-numeric values with None values = [convert_diameter(value) for value in values] if "left" in category: category_name = "Left Pupil Diameter" else: category_name = "Right Pupil Diameter" # Create a DataFrame from the values for Altair df = pd.DataFrame( { "Frame": range(1, len(values) + 1), category_name: values, } ) # Get the min and max values for y-axis limits, ignoring None min_value = min(filter(lambda x: x is not None, values), default=None) max_value = max(filter(lambda x: x is not None, values), default=None) # Create an Altair chart with y-axis limits line_chart = ( alt.Chart(df) .mark_line(color=selected_color) .encode( x=alt.X("Frame:Q", title="Frame Number"), y=alt.Y( f"{category_name}:Q", title="Diameter", scale=alt.Scale(domain=[min_value, max_value]), ), tooltip=[ "Frame", alt.Tooltip(f"{category_name}:Q", title="Diameter"), ], ) # .properties(title=f"{category} - Predicted Diameters") # .configure_axis(grid=True) ) points_chart = line_chart.mark_point(color=selected_color, filled=True) final_chart = ( line_chart.properties( title=f"{'Left Pupil' if 'left' in category else 'Right Pupil'} - Predicted Diameters" ) + points_chart ).interactive() final_chart = final_chart.configure_axis(grid=True) # Display the Altair chart st.altair_chart(final_chart, use_container_width=True) return df def plot_combined_charts(predicted_diameters): all_min_values = [] all_max_values = [] # Create an empty DataFrame to store combined data for plotting combined_df = pd.DataFrame() # Iterate through categories and collect data for category, values in predicted_diameters.items(): # Convert values to numeric, replacing non-numeric values with None values = [convert_diameter(value) for value in values] # Get the min and max values for y-axis limits, ignoring None min_value = min(filter(lambda x: x is not None, values), default=None) max_value = max(filter(lambda x: x is not None, values), default=None) all_min_values.append(min_value) all_max_values.append(max_value) category = "left_pupil" if "left" in category else "right_pupil" # Create a DataFrame from the values df = pd.DataFrame( { "Diameter": values, "Frame": range(1, len(values) + 1), # Create a frame column starting from 1 "Category": category, # Add a column to specify the category } ) # Append to combined DataFrame combined_df = pd.concat([combined_df, df], ignore_index=True) combined_chart = ( alt.Chart(combined_df) .mark_line() .encode( x=alt.X("Frame:Q", title="Frame Number"), y=alt.Y( "Diameter:Q", title="Diameter", scale=alt.Scale(domain=[min(all_min_values), max(all_max_values)]), ), color=alt.Color("Category:N", scale=alt.Scale(range=colors), title="Pupil Type"), tooltip=["Frame", "Diameter:Q", "Category:N"], ) ) points_chart = combined_chart.mark_point(filled=True) final_chart = (combined_chart.properties(title="Predicted Diameters") + points_chart).interactive() final_chart = final_chart.configure_axis(grid=True) # Display the combined chart st.altair_chart(final_chart, use_container_width=True) # -------------------------------------------- # Convert to a DataFrame left_pupil_values = [convert_diameter(value) for value in predicted_diameters["left_eye"]] right_pupil_values = [convert_diameter(value) for value in predicted_diameters["right_eye"]] df = pd.DataFrame( { "Frame": range(1, len(left_pupil_values) + 1), "Left Pupil Diameter": left_pupil_values, "Right Pupil Diameter": right_pupil_values, } ) # Calculate the difference between left and right pupil diameters df["Difference Value"] = df["Left Pupil Diameter"] - df["Right Pupil Diameter"] # Determine the status of the difference df["Difference Status"] = df.apply( lambda row: "L>R" if row["Left Pupil Diameter"] > row["Right Pupil Diameter"] else "L 0: df = plot_ears(eyes_ratios, df) st.dataframe(df, hide_index=True, use_container_width=True)