umair894's picture
Update app.py
a646275 verified
raw
history blame
3.37 kB
import gradio as gr
import torch
from unsloth import FastLanguageModel
from transformers import TextStreamer
from unsloth.chat_templates import get_chat_template
# Initialize the model
max_seq_length = 2048
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="umair894/llama3",
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit,
)
tokenizer = get_chat_template(
tokenizer,
chat_template="llama-3",
mapping={"role": "from", "content": "value", "user": "human", "assistant": "gpt"},
map_eos_token=True,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
# VIKK introduction prompt
vikk_intro = """Consider you self a legal assistant in USA and your name is VIKK. You are very knowledgeable about all aspects of the law...
"""
# Function to get chat response
def get_response(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}] if system_message else []
if not history:
history = [{"role": "assistant", "content": vikk_intro}]
for msg in history:
if msg[0]:
messages.append({"role": "user", "content": msg[0]})
if msg[1]:
messages.append({"role": "assistant", "content": msg[1]})
messages.append({"role": "user", "content": message})
formatted_messages = [{"from": "assistant", "value": vikk_intro}]
for msg in messages[1:]:
role = "human" if msg["role"] == "user" else "assistant"
formatted_messages.append({"from": role, "value": msg["content"]})
inputs = tokenizer.apply_chat_template(
formatted_messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
).to("cuda")
text_streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
output = ""
for out in model.generate(input_ids=inputs["input_ids"], streamer=text_streamer, max_new_tokens=max_tokens, use_cache=True):
output += out
response = tokenizer.decode(output, skip_special_tokens=True).split(">>> Assistant: ")[-1].strip()
return response
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Chatbot Interface")
with gr.Row():
with gr.Column():
system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message")
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
with gr.Column():
chatbot = gr.Chatbot()
user_input = gr.Textbox(label="You:")
send_button = gr.Button("Send")
def respond(message, history, system_message, max_tokens, temperature, top_p):
response = get_response(message, history, system_message, max_tokens, temperature, top_p)
history.append((message, response))
return history
send_button.click(respond, [user_input, chatbot, system_message, max_tokens, temperature, top_p], chatbot)
if __name__ == "__main__":
demo.launch()