Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from unsloth import FastLanguageModel | |
from transformers import TextStreamer | |
from unsloth.chat_templates import get_chat_template | |
# Initialize the model | |
max_seq_length = 2048 | |
dtype = None | |
load_in_4bit = True | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name="umair894/llama3", | |
max_seq_length=max_seq_length, | |
dtype=dtype, | |
load_in_4bit=load_in_4bit, | |
) | |
tokenizer = get_chat_template( | |
tokenizer, | |
chat_template="llama-3", | |
mapping={"role": "from", "content": "value", "user": "human", "assistant": "gpt"}, | |
map_eos_token=True, | |
) | |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
# VIKK introduction prompt | |
vikk_intro = """Consider you self a legal assistant in USA and your name is VIKK. You are very knowledgeable about all aspects of the law... | |
""" | |
# Function to get chat response | |
def get_response(message, history, system_message, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_message}] if system_message else [] | |
if not history: | |
history = [{"role": "assistant", "content": vikk_intro}] | |
for msg in history: | |
if msg[0]: | |
messages.append({"role": "user", "content": msg[0]}) | |
if msg[1]: | |
messages.append({"role": "assistant", "content": msg[1]}) | |
messages.append({"role": "user", "content": message}) | |
formatted_messages = [{"from": "assistant", "value": vikk_intro}] | |
for msg in messages[1:]: | |
role = "human" if msg["role"] == "user" else "assistant" | |
formatted_messages.append({"from": role, "value": msg["content"]}) | |
inputs = tokenizer.apply_chat_template( | |
formatted_messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_tensors="pt", | |
).to("cuda") | |
text_streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
output = "" | |
for out in model.generate(input_ids=inputs["input_ids"], streamer=text_streamer, max_new_tokens=max_tokens, use_cache=True): | |
output += out | |
response = tokenizer.decode(output, skip_special_tokens=True).split(">>> Assistant: ")[-1].strip() | |
return response | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Chatbot Interface") | |
with gr.Row(): | |
with gr.Column(): | |
system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message") | |
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") | |
with gr.Column(): | |
chatbot = gr.Chatbot() | |
user_input = gr.Textbox(label="You:") | |
send_button = gr.Button("Send") | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
response = get_response(message, history, system_message, max_tokens, temperature, top_p) | |
history.append((message, response)) | |
return history | |
send_button.click(respond, [user_input, chatbot, system_message, max_tokens, temperature, top_p], chatbot) | |
if __name__ == "__main__": | |
demo.launch() | |