File size: 4,861 Bytes
73d6edb
 
 
 
 
 
59c3dd8
ef187eb
 
0cffd40
24478b9
ef187eb
9c1fd31
2b0f02c
24478b9
 
 
 
9c1fd31
eb7c9df
24478b9
 
fec3be6
8b1e96d
9c1fd31
ec35e66
4efab5c
 
 
ec35e66
 
4efab5c
 
 
 
 
 
 
 
8b1e96d
a0f72b8
96fa82a
 
 
cddab4e
 
96fa82a
fec3be6
24478b9
 
 
6bb7d88
24478b9
 
96fa82a
9a5c550
 
24478b9
4429dd4
82ba711
d94350f
 
24478b9
83f18c9
82ba711
96fa82a
11fa80e
24478b9
 
 
d06d30a
9c1fd31
96fa82a
a9fe87b
96fa82a
 
 
 
a9fe87b
96fa82a
 
 
b18804c
6663f0e
9c1fd31
 
d06d30a
24478b9
 
0cffd40
8b3ca8d
24478b9
 
 
 
8b3ca8d
0cffd40
3958ec9
8b1e96d
0cffd40
4efab5c
24478b9
 
db04c05
82ba711
24478b9
44ee61c
db04c05
 
44ee61c
db04c05
 
 
 
 
24478b9
 
 
 
a9fe87b
24478b9
 
 
 
 
 
a9fe87b
 
24478b9
 
 
a9fe87b
 
cf63248
 
9a5c550
a9fe87b
 
 
 
 
cf63248
 
 
a9fe87b
cf63248
a9fe87b
82ba711
 
9a5c550
f41fe82
8b3ca8d
 
24478b9
 
 
fe16630
4b5a4e3
8b3ca8d
8b1e96d
a9fe87b
9a5c550
8b1e96d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import subprocess
subprocess.run(
    'pip install numpy==1.26.4',
    shell=True
)

import os
import gradio as gr
import torch
import spaces
import random
from PIL import Image
import numpy as np

from glob import glob
from pathlib import Path
from typing import Optional

from diffsynth import save_video, ModelManager, SVDVideoPipeline, HunyuanDiTImagePipeline

import uuid

HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Constants
MAX_SEED = np.iinfo(np.int32).max
CSS = """
footer {
    visibility: hidden;
}
"""

JS = """function () {
  gradioURL = window.location.href
  if (!gradioURL.endsWith('?__theme=dark')) {
    window.location.replace(gradioURL + '?__theme=dark');
  }
}"""


# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():
    model_manager = ModelManager(
        torch_dtype=torch.float16, 
        device="cuda", 
        model_id_list=["stable-video-diffusion-img2vid-xt", "ExVideo-SVD-128f-v1"],
        downloading_priority=["HuggingFace"])
    pipe = SVDVideoPipeline.from_model_manager(model_manager)


@spaces.GPU(duration=120)
def generate(
    image,
    seed: Optional[int] = -1,
    motion_bucket_id: int = 127,
    fps_id: int = 25,
    num_inference_steps: int = 10,
    num_frames: int = 50,
    output_folder: str = "outputs",
    progress=gr.Progress(track_tqdm=True)):
    
    if seed == -1:
        seed = random.randint(0, MAX_SEED)
        
    image = Image.open(image)

    torch.manual_seed(seed)
    
    os.makedirs(output_folder, exist_ok=True)
    base_count = len(glob(os.path.join(output_folder, "*.mp4")))
    video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")

    video = pipe(
        input_image=image.resize((512, 512)), 
        num_frames=num_frames, 
        fps=fps_id, 
        height=512, 
        width=512,
        motion_bucket_id=motion_bucket_id,
        num_inference_steps=num_inference_steps,
        min_cfg_scale=2, 
        max_cfg_scale=2, 
        contrast_enhance_scale=1.2
    )
    model_manager.to("cpu")
    
    save_video(video, video_path, fps=fps_id)
    
    return video_path, seed


examples = [
        "./train.jpg",
        "./girl.webp",
        "./robo.jpg",
    ]



# Gradio Interface

with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
    gr.HTML("<h1><center>Exvideo📽️</center></h1>")
    gr.HTML("<p><center><a href='https://huggingface.co/ECNU-CILab/ExVideo-SVD-128f-v1'>ExVideo</a> image-to-video generation<br><b>Update</b>: first version</center></p>")
    with gr.Row():
        image = gr.Image(label='Upload Image', height=600, scale=2, image_mode="RGB", type="filepath")
        video = gr.Video(label="Generated Video", height=600, scale=2)
        with gr.Accordion("Advanced Options", open=True):
            with gr.Column(scale=1):
                seed = gr.Slider(
                    label="Seed (-1 Random)",
                    minimum=-1,
                    maximum=MAX_SEED,
                    step=1,
                    value=-1,
                )
                motion_bucket_id = gr.Slider(
                    label="Motion bucket id", 
                    info="Controls how much motion to add/remove from the image", 
                    value=127, 
                    step=1,
                    minimum=1, 
                    maximum=255
                )
                fps_id = gr.Slider(
                    label="Frames per second", 
                    info="The length of your video in seconds will be 25/fps", 
                    value=6,
                    step=1,
                    minimum=5, 
                    maximum=30
                )
                num_inference_steps = gr.Slider(
                    label="Inference steps", 
                    info="Inference steps",
                    step=1,
                    value=10, 
                    minimum=1, 
                    maximum=50
                )
                num_frames = gr.Slider(
                    label="Frames num", 
                    info="Frames num",
                    step=1,
                    value=50, 
                    minimum=1, 
                    maximum=128
                )               
    with gr.Row():
        submit_btn = gr.Button(value="Generate")
        #stop_btn = gr.Button(value="Stop", variant="stop")
        clear_btn = gr.ClearButton([image, seed, video])
    gr.Examples(
        examples=examples,
        inputs=image,
        outputs=[video, seed],
        fn=generate,
        cache_examples="lazy",
        examples_per_page=4,
    )

    submit_event = submit_btn.click(fn=generate, inputs=[image, seed, motion_bucket_id, fps_id,num_inference_steps, num_frames], outputs=[video, seed], api_name="video")
    #stop_btn.click(fn=None, inputs=None, outputs=None, cancels=[submit_event])
    
demo.queue().launch()