import subprocess subprocess.run( 'pip install numpy==1.26.4', shell=True ) import os import gradio as gr import torch import spaces import random from PIL import Image import numpy as np from glob import glob from pathlib import Path from typing import Optional from diffsynth import save_video, ModelManager, SVDVideoPipeline, HunyuanDiTImagePipeline import uuid HF_TOKEN = os.environ.get("HF_TOKEN", None) # Constants MAX_SEED = np.iinfo(np.int32).max CSS = """ footer { visibility: hidden; } """ JS = """function () { gradioURL = window.location.href if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }""" # Ensure model and scheduler are initialized in GPU-enabled function if torch.cuda.is_available(): model_manager = ModelManager( torch_dtype=torch.float16, device="cuda", model_id_list=["stable-video-diffusion-img2vid-xt", "ExVideo-SVD-128f-v1"], downloading_priority=["HuggingFace"]) pipe = SVDVideoPipeline.from_model_manager(model_manager) @spaces.GPU(duration=120) def generate( image, seed: Optional[int] = -1, motion_bucket_id: int = 127, fps_id: int = 25, num_inference_steps: int = 10, num_frames: int = 50, output_folder: str = "outputs", progress=gr.Progress(track_tqdm=True)): if seed == -1: seed = random.randint(0, MAX_SEED) image = Image.open(image) torch.manual_seed(seed) os.makedirs(output_folder, exist_ok=True) base_count = len(glob(os.path.join(output_folder, "*.mp4"))) video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") video = pipe( input_image=image.resize((512, 512)), num_frames=num_frames, fps=fps_id, height=512, width=512, motion_bucket_id=motion_bucket_id, num_inference_steps=num_inference_steps, min_cfg_scale=2, max_cfg_scale=2, contrast_enhance_scale=1.2 ) model_manager.to("cpu") save_video(video, video_path, fps=fps_id) return video_path, seed examples = [ "./train.jpg", "./girl.webp", "./robo.jpg", ] # Gradio Interface with gr.Blocks(css=CSS, js=JS, theme="soft") as demo: gr.HTML("

Exvideo📽️

") gr.HTML("

ExVideo image-to-video generation
Update: first version

") with gr.Row(): image = gr.Image(label='Upload Image', height=600, scale=2, image_mode="RGB", type="filepath") video = gr.Video(label="Generated Video", height=600, scale=2) with gr.Accordion("Advanced Options", open=True): with gr.Column(scale=1): seed = gr.Slider( label="Seed (-1 Random)", minimum=-1, maximum=MAX_SEED, step=1, value=-1, ) motion_bucket_id = gr.Slider( label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, step=1, minimum=1, maximum=255 ) fps_id = gr.Slider( label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, step=1, minimum=5, maximum=30 ) num_inference_steps = gr.Slider( label="Inference steps", info="Inference steps", step=1, value=10, minimum=1, maximum=50 ) num_frames = gr.Slider( label="Frames num", info="Frames num", step=1, value=50, minimum=1, maximum=128 ) with gr.Row(): submit_btn = gr.Button(value="Generate") #stop_btn = gr.Button(value="Stop", variant="stop") clear_btn = gr.ClearButton([image, seed, video]) gr.Examples( examples=examples, inputs=image, outputs=[video, seed], fn=generate, cache_examples="lazy", examples_per_page=4, ) submit_event = submit_btn.click(fn=generate, inputs=[image, seed, motion_bucket_id, fps_id,num_inference_steps, num_frames], outputs=[video, seed], api_name="video") #stop_btn.click(fn=None, inputs=None, outputs=None, cancels=[submit_event]) demo.queue().launch()