import os import time import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr from threading import Thread HF_TOKEN = os.environ.get("HF_TOKEN", None) MODEL = "evabyte/EvaByte-SFT" MODEL_BASE = "evabyte/EvaByte" TITLE = "

EvaByte

" PLACEHOLDER = """

Hi! How can I help you today?

""" CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h3 { text-align: center; } """ device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True).eval().to(device) @spaces.GPU() def stream_chat( message: str, history: list, system_prompt: str, temperature: float = 0.8, max_new_tokens: int = 512, top_p: float = 1.0, ): print(f'message: {message}') print(f'history: {history}') conversation = [ {"role": "system", "content": system_prompt} ] for prompt, answer in history: conversation.extend([ {"role": "user", "content": prompt}, {"role": "assistant", "content": answer}, ]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(device) gen_out = model.multi_byte_generate( input_ids=input_ids, max_new_tokens = max_new_tokens, do_sample = False if temperature == 0 else True, top_p = top_p, temperature = temperature, ) response = tokenizer.decode( gen_out[0][input_ids.shape[1]:], skip_special_tokens=False, clean_up_tokenization_spaces=False ) for i in range(len(response)): time.sleep(0.02) yield response[: i + 1] chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) with gr.Blocks(css=CSS, theme="soft") as demo: gr.HTML(TITLE) gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") gr.ChatInterface( fn=stream_chat, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Textbox( value="You are a helpful assistant.", label="System Prompt", lines=5, render=False, ), gr.Slider( minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature", render=False, ), gr.Slider( minimum=128, maximum=8192, step=1, value= 512, label="Max new tokens", render=False, ), gr.Slider( minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False, ), ], examples=[ ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."], ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."], ["Tell me a random fun fact about the Roman Empire."], ["Show me a code snippet of a website's sticky header in CSS and JavaScript."], ], cache_examples=False, ) if __name__ == "__main__": demo.launch()