Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,312 Bytes
cc5b602 6f619d7 ae90620 6386510 677d853 51a7d9e 652620b 6386510 0486bff 51a7d9e 1a2b4aa e6367a7 1a2b4aa 51a7d9e 6386510 bd34f0b 0486bff bd34f0b 51a7d9e 6386510 51a7d9e bd34f0b 51a7d9e da59244 652620b 7cb9567 652620b 0486bff b179e70 6b67af9 677d853 f77fb99 6d497f0 4ed884e 3d7390f 4ed884e 652620b 4ed884e 652620b 3d7390f 652620b ce84a62 652620b c4592e6 4ed884e c4592e6 c02dde9 1a2b4aa 652620b 27dc368 652620b 51a7d9e 652620b 6386510 51a7d9e 82b38de 51a7d9e 0486bff 51a7d9e 3d7390f 1a2b4aa 3d7390f 9b0b359 3d7390f 51a7d9e 4ed884e 51a7d9e 652620b 51a7d9e bd34f0b 4ed884e bd34f0b 4ed884e bd34f0b 51a7d9e 652620b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
MODEL_LIST = ["meta-llama/Meta-Llama-3.1-8B-Instruct"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "Skywork/Skywork-o1-Open-Llama-3.1-8B"
TITLE = "<h1><center>Skywork-o1-Open-Llama-3.1-8B</center></h1>"
PLACEHOLDER = """
<center>
<p>Hi! How can I help you today?</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
device = "cuda" # for GPU usage or "cpu" for CPU usage
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type= "nf4")
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config)
@spaces.GPU(duration=100)
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.8,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = [
{"role": "system", "content": system_prompt}
]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens = max_new_tokens,
do_sample = False if temperature == 0 else True,
top_p = top_p,
top_k = top_k,
temperature = temperature,
repetition_penalty=penalty,
eos_token_id=128009,
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Textbox(
value="""
You are Skywork-o1, a thinking model developed by Skywork AI, specializing in solving complex problems involving mathematics, coding, and logical reasoning through deep thought.
When faced with a user's request, you first engage in a lengthy and in-depth thinking process to explore possible solutions to the problem.
After completing your thoughts, you then provide a detailed explanation of the solution process in your response.
""",
label="System Prompt",
lines=5,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |