File size: 3,911 Bytes
3738ef6
 
 
51a7d9e
1e64d54
51a7d9e
edb9e8a
51a7d9e
 
8a59c8f
 
51a7d9e
8a59c8f
3738ef6
 
 
 
 
 
51a7d9e
 
 
 
3738ef6
 
 
 
 
 
 
51a7d9e
 
 
3738ef6
 
8a59c8f
3bc2ef0
3738ef6
1e64d54
3738ef6
1e64d54
659ca36
85dc104
3738ef6
 
 
 
 
6414f48
3738ef6
 
 
 
 
 
 
 
51a7d9e
3738ef6
 
 
 
51a7d9e
3738ef6
99a7a45
8a59c8f
84e1807
 
3738ef6
 
1c74333
3738ef6
 
51a7d9e
3738ef6
84e1807
 
d6a6e58
84e1807
 
9eefdf9
84e1807
88b5b33
84e1807
 
3738ef6
51a7d9e
3738ef6
51a7d9e
 
 
 
 
 
 
 
3738ef6
13f5041
3738ef6
 
 
 
51a7d9e
 
 
 
3738ef6
51a7d9e
 
 
 
3738ef6
 
51a7d9e
6414f48
3738ef6
 
 
 
 
 
 
 
 
 
 
51a7d9e
 
 
 
 
 
 
 
 
3738ef6
51a7d9e
 
3738ef6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
from threading import Thread

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "evabyte/EvaByte-SFT"
MODEL_BASE = "evabyte/EvaByte"

TITLE = "<h1><center>EvaByte</center></h1>"

PLACEHOLDER = """
<center>
<p>Hi! How can I help you today?</p>
</center>
"""


CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""

device = "cuda" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True).eval().to(device)

@spaces.GPU()
def stream_chat(
    message: str, 
    history: list,
    system_prompt: str,
    temperature: float = 0.8, 
    max_new_tokens: int = 512, 
    top_p: float = 1.0, 
):
    print(f'message: {message}')
    print(f'history: {history}')

    conversation = [
        {"role": "system", "content": system_prompt}
    ]
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt}, 
            {"role": "assistant", "content": answer},
        ])

    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(device)
        
    gen_out = model.multi_byte_generate(
        input_ids=input_ids, 
        max_new_tokens = max_new_tokens,
        do_sample = False if temperature == 0 else True,
        top_p = top_p,
        temperature = temperature,
    )

    response = tokenizer.decode(
        gen_out[0][input_ids.shape[1]:], 
        skip_special_tokens=False,
        clean_up_tokenization_spaces=False
    )

    for i in range(len(response)):
        time.sleep(0.02)
        yield response[: i + 1]
                
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)

with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML(TITLE)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Textbox(
                value="You are a helpful assistant.",
                label="System Prompt",
                lines=5,
                render=False,
            ),
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=8192,
                step=1,
                value= 512,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
        ],
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me a random fun fact about the Roman Empire."],
            ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()