Spaces:
Runtime error
Runtime error
File size: 8,189 Bytes
7987133 9e74540 7987133 9e74540 7ee7b26 9e74540 7987133 9e74540 7987133 e66a8fa 7987133 e66a8fa 9e74540 7ee7b26 34d1458 7987133 34d1458 7ee7b26 34d1458 9e74540 7987133 34d1458 9e74540 7987133 9e74540 34d1458 7987133 34d1458 7987133 34d1458 7987133 34d1458 9e74540 34d1458 9e74540 34d1458 9e74540 34d1458 9e74540 7987133 9e74540 7987133 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import streamlit as st
import pandas as pd
import numpy as np
from PIL import Image
import requests
import tokenizers
import os
from io import BytesIO
import pickle
import base64
import datetime
import torch
from transformers import (
VisionTextDualEncoderModel,
AutoFeatureExtractor,
AutoTokenizer,
CLIPModel,
AutoProcessor
)
import streamlit.components.v1 as components
from st_clickable_images import clickable_images #pip install st-clickable-images
@st.cache(
hash_funcs={
torch.nn.parameter.Parameter: lambda _: None,
tokenizers.Tokenizer: lambda _: None,
tokenizers.AddedToken: lambda _: None
}
)
def load_path_clip():
model = CLIPModel.from_pretrained("vinid/plip")
processor = AutoProcessor.from_pretrained("vinid/plip")
return model, processor
@st.cache
def init():
with open('data/twitter.asset', 'rb') as f:
data = pickle.load(f)
meta = data['meta'].reset_index(drop=True)
image_embedding = data['image_embedding']
text_embedding = data['text_embedding']
print(meta.shape, image_embedding.shape)
validation_subset_index = meta['source'].values == 'Val_Tweets'
return meta, image_embedding, text_embedding, validation_subset_index
def embed_images(model, images, processor):
inputs = processor(images=images)
pixel_values = torch.tensor(np.array(inputs["pixel_values"]))
with torch.no_grad():
embeddings = model.get_image_features(pixel_values=pixel_values)
return embeddings
def embed_texts(model, texts, processor):
inputs = processor(text=texts, padding="longest")
input_ids = torch.tensor(inputs["input_ids"])
attention_mask = torch.tensor(inputs["attention_mask"])
with torch.no_grad():
embeddings = model.get_text_features(
input_ids=input_ids, attention_mask=attention_mask
)
return embeddings
def app():
st.title('Image to Image Retrieval')
st.markdown('#### A pathology image search engine that correlate images with images.')
st.markdown("Image-to-image retrieval can be used to retrieve pathology images that have contents similar to the target image input, with the ability to comprehend the key components from the input image.")
st.markdown('#### Demo')
meta, image_embedding, text_embedding, validation_subset_index = init()
model, processor = load_path_clip()
col1, col2 = st.columns(2)
with col1:
data_options = ["All twitter data (03/21/2006 β 01/15/2023)",
"Twitter validation data (11/16/2022 β 01/15/2023)"]
st.radio(
"Choose dataset for image retrieval π",
key="datapool",
options=data_options,
)
with col2:
retrieval_options = ["Image only",
"Text and image (beta)",
]
st.radio(
"Similarity calcuation π",
key="calculation_option",
options=retrieval_options,
)
st.markdown('Try out following examples:')
example_path = 'data/example_images'
list_of_examples = [os.path.join(example_path, v) for v in os.listdir(example_path)]
example_imgs = []
for file in list_of_examples:
with open(file, "rb") as image:
encoded = base64.b64encode(image.read()).decode()
example_imgs.append(f"data:image/jpeg;base64,{encoded}")
clicked = clickable_images(
example_imgs,
titles=[f"Image #{str(i)}" for i in range(len(example_imgs))],
div_style={"display": "flex", "justify-content": "center", "flex-wrap": "wrap"},
img_style={"margin": "5px", "height": "70px"},
)
isExampleClicked = False
if clicked > -1:
image = Image.open(list_of_examples[clicked])
isExampleClicked = True
col1, col2, _ = st.columns(3)
with col1:
query = st.file_uploader("Choose a file to upload")
proceed = False
if query:
image = Image.open(query)
proceed = True
elif isExampleClicked:
proceed = True
if proceed:
with col2:
st.image(image, caption='Your upload')
input_image = embed_images(model, [image], processor)[0].detach().cpu().numpy()
input_image = input_image/np.linalg.norm(input_image)
# Sort IDs by cosine-similarity from high to low
if st.session_state.calculation_option == retrieval_options[0]: # Image only
similarity_scores = input_image.dot(image_embedding.T)
else: # Text and Image
similarity_scores_i = input_image.dot(image_embedding.T)
similarity_scores_t = input_image.dot(text_embedding.T)
similarity_scores_i = similarity_scores_i/np.max(similarity_scores_i)
similarity_scores_t = similarity_scores_t/np.max(similarity_scores_t)
similarity_scores = (similarity_scores_i + similarity_scores_t)/2
############################################################
# Get top results
############################################################
topn = 5
df = pd.DataFrame(np.c_[np.arange(len(meta)), similarity_scores, meta['weblink'].values], columns = ['idx', 'score', 'twitterlink'])
if st.session_state.datapool == data_options[1]: #Use val twitter data
df = df.loc[validation_subset_index,:]
df = df.sort_values('score', ascending=False)
df = df.drop_duplicates(subset=['twitterlink'])
best_id_topk = df['idx'].values[:topn]
target_scores = df['score'].values[:topn]
target_weblinks = df['twitterlink'].values[:topn]
############################################################
# Display results
############################################################
st.markdown('#### Top 5 results:')
topk_options = ['1st', '2nd', '3rd', '4th', '5th']
tab = {}
tab[0], tab[1], tab[2] = st.columns(3)
for i in [0,1,2]:
with tab[i]:
topn_value = i
topn_txt = topk_options[i]
st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})')
components.html('''
<blockquote class="twitter-tweet">
<a href="%s"></a>
</blockquote>
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
</script>
''' % target_weblinks[topn_value],
height=800)
tab[3], tab[4], tab[5] = st.columns(3)
for i in [3,4]:
with tab[i]:
topn_value = i
topn_txt = topk_options[i]
st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})')
components.html('''
<blockquote class="twitter-tweet">
<a href="%s"></a>
</blockquote>
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
</script>
''' % target_weblinks[topn_value],
height=800)
st.markdown('Disclaimer')
st.caption('Please be advised that this function has been developed in compliance with the Twitter policy of data usage and sharing. It is important to note that the results obtained from this function are not intended to constitute medical advice or replace consultation with a qualified medical professional. The use of this function is solely at your own risk and should be consistent with applicable laws, regulations, and ethical considerations. We do not warrant or guarantee the accuracy, completeness, suitability, or usefulness of this function for any particular purpose, and we hereby disclaim any liability arising from any reliance placed on this function or any results obtained from its use. If you wish to review the original Twitter post, you should access the source page directly on Twitter.')
|