Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import requests | |
import hopsworks | |
import joblib | |
# project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU") | |
# fs = project.get_feature_store() | |
# #q | |
# mr = project.get_model_registry() | |
# model = mr.get_model("titanic_modal", version=1) | |
# model_dir = model.download() | |
# model = joblib.load(model_dir + "/titanic_model.pkl") | |
# def titanic(pclass, sex, age, sibsp, parch, fare, embarked): | |
# input_list = [] | |
# input_list.append(pclass) | |
# input_list.append(sex) | |
# input_list.append(age) | |
# input_list.append(sibsp) | |
# input_list.append(parch) | |
# input_list.append(fare) | |
# input_list.append(embarked) | |
# # 'res' is a list of predictions returned as the label. | |
# res = model.predict(np.asarray(input_list).reshape(1, -1)) | |
# # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want | |
# # the first element. | |
# return res[0] | |
# demo = gr.Interface( | |
# fn=titanic, | |
# title="Titanic Predictive Analytics", | |
# description="Experiment to predict if a passenger survived the Titanic disaster", | |
# allow_flagging="never", | |
# inputs=[ | |
# gr.inputs.Number(default=1.0, label="PClass"), | |
# gr.inputs.Number(default=1.0, label="Sex: Female = 0, Male = 1"), | |
# gr.inputs.Number(default=1.0, label="Age"), | |
# gr.inputs.Number(default=1.0, label="SibSp"), | |
# gr.inputs.Number(default=1.0, label="Parch"), | |
# gr.inputs.Number(default=1.0, label="Fare"), | |
# gr.inputs.Number(default=1.0, label="Embarked: S = 0, C = 1, Q = 2"), | |
# ], | |
# outputs=gr.Textbox()) | |
# demo.launch() | |
# monitoring part of the code | |
import gradio as gr | |
from PIL import Image | |
import hopsworks | |
project = hopsworks.login(api_key_value="otd1BvtKwvlF8OC1.Y8Kyt1QpZqDPMRNPIF3KvVGuFJpRdxIy39879ueQwymTgSDUU9vWKFMOnBqsyxfk") | |
fs = project.get_feature_store() | |
#ss | |
dataset_api = project.get_dataset_api() | |
dataset_api.download("Resources/images/df_recent.png") | |
dataset_api.download("Resources/images/confusion_matrix.png") | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Label("Recent Prediction History") | |
input_img = gr.Image("df_recent.png", elem_id="recent-predictions") | |
with gr.Column(): | |
gr.Label("Confusion Maxtrix with Historical Prediction Performance") | |
input_img = gr.Image("confusion_matrix.png", elem_id="confusion-matrix") | |
demo.launch() |