vishalned commited on
Commit
69ff57c
1 Parent(s): 64e5cd7

gg yet again

Browse files
Files changed (1) hide show
  1. app.py +54 -76
app.py CHANGED
@@ -6,92 +6,70 @@ import requests
6
  import hopsworks
7
  import joblib
8
 
9
- project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU")
10
- fs = project.get_feature_store()
11
-
12
-
13
- mr = project.get_model_registry()
14
- model = mr.get_model("titanic_modal", version=1)
15
- model_dir = model.download()
16
- model = joblib.load(model_dir + "/titanic_model.pkl")
17
-
18
- def titanic(pclass, sex, age, sibsp, parch, fare, embarked):
19
- input_list = []
20
- input_list.append(pclass)
21
- input_list.append(sex)
22
- input_list.append(age)
23
- input_list.append(sibsp)
24
- input_list.append(parch)
25
- input_list.append(fare)
26
- input_list.append(embarked)
27
- # 'res' is a list of predictions returned as the label.
28
- res = model.predict(np.asarray(input_list).reshape(1, -1))
29
- # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
30
- # the first element.
31
- return res[0]
32
 
 
 
 
 
33
 
34
- # def iris(sepal_length, sepal_width, petal_length, petal_width):
35
  # input_list = []
36
- # input_list.append(sepal_length)
37
- # input_list.append(sepal_width)
38
- # input_list.append(petal_length)
39
- # input_list.append(petal_width)
 
 
 
40
  # # 'res' is a list of predictions returned as the label.
41
- # res = model.predict(np.asarray(input_list).reshape(1, -1))
42
- # # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
43
  # # the first element.
44
- # flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
45
- # img = Image.open(requests.get(flower_url, stream=True).raw)
46
- # return img
47
 
48
- demo = gr.Interface(
49
- fn=titanic,
50
- title="Titanic Predictive Analytics",
51
- description="Experiment to predict if a passenger survived the Titanic disaster",
52
- allow_flagging="never",
53
- inputs=[
54
- gr.inputs.Number(default=1.0, label="PClass"),
55
- gr.inputs.Number(default=1.0, label="Sex"),
56
- gr.inputs.Number(default=1.0, label="Age"),
57
- gr.inputs.Number(default=1.0, label="SibSp"),
58
- gr.inputs.Number(default=1.0, label="Parch"),
59
- gr.inputs.Number(default=1.0, label="Fare"),
60
- gr.inputs.Number(default=1.0, label="Embarked")
61
- ],
62
- outputs=gr.Textbox())
63
 
64
- demo.launch()
65
 
66
  # monitoring part of the code
67
- # import gradio as gr
68
- # from PIL import Image
69
- # import hopsworks
 
 
 
 
 
70
 
71
- # project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU")
72
- # fs = project.get_feature_store()
73
- # #h
74
- # dataset_api = project.get_dataset_api()
75
 
76
- # dataset_api.download("Resources/images/latest_iris.png")
77
- # dataset_api.download("Resources/images/actual_iris.png")
78
- # dataset_api.download("Resources/images/df_recent.png")
79
- # dataset_api.download("Resources/images/confusion_matrix.png")
80
 
81
- # with gr.Blocks() as demo:
82
- # with gr.Row():
83
- # with gr.Column():
84
- # gr.Label("Today's Predicted Image")
85
- # input_img = gr.Image("latest_iris.png", elem_id="predicted-img")
86
- # with gr.Column():
87
- # gr.Label("Today's Actual Image")
88
- # input_img = gr.Image("actual_iris.png", elem_id="actual-img")
89
- # with gr.Row():
90
- # with gr.Column():
91
- # gr.Label("Recent Prediction History")
92
- # input_img = gr.Image("df_recent.png", elem_id="recent-predictions")
93
- # with gr.Column():
94
- # gr.Label("Confusion Maxtrix with Historical Prediction Performance")
95
- # input_img = gr.Image("confusion_matrix.png", elem_id="confusion-matrix")
96
 
97
- # demo.launch()
 
6
  import hopsworks
7
  import joblib
8
 
9
+ # project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU")
10
+ # fs = project.get_feature_store()
11
+ # #q
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ # mr = project.get_model_registry()
14
+ # model = mr.get_model("titanic_modal", version=1)
15
+ # model_dir = model.download()
16
+ # model = joblib.load(model_dir + "/titanic_model.pkl")
17
 
18
+ # def titanic(pclass, sex, age, sibsp, parch, fare, embarked):
19
  # input_list = []
20
+ # input_list.append(pclass)
21
+ # input_list.append(sex)
22
+ # input_list.append(age)
23
+ # input_list.append(sibsp)
24
+ # input_list.append(parch)
25
+ # input_list.append(fare)
26
+ # input_list.append(embarked)
27
  # # 'res' is a list of predictions returned as the label.
28
+ # res = model.predict(np.asarray(input_list).reshape(1, -1))
29
+ # # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
30
  # # the first element.
31
+ # return res[0]
32
+
 
33
 
34
+ # demo = gr.Interface(
35
+ # fn=titanic,
36
+ # title="Titanic Predictive Analytics",
37
+ # description="Experiment to predict if a passenger survived the Titanic disaster",
38
+ # allow_flagging="never",
39
+ # inputs=[
40
+ # gr.inputs.Number(default=1.0, label="PClass"),
41
+ # gr.inputs.Number(default=1.0, label="Sex: Female = 0, Male = 1"),
42
+ # gr.inputs.Number(default=1.0, label="Age"),
43
+ # gr.inputs.Number(default=1.0, label="SibSp"),
44
+ # gr.inputs.Number(default=1.0, label="Parch"),
45
+ # gr.inputs.Number(default=1.0, label="Fare"),
46
+ # gr.inputs.Number(default=1.0, label="Embarked: S = 0, C = 1, Q = 2"),
47
+ # ],
48
+ # outputs=gr.Textbox())
49
 
50
+ # demo.launch()
51
 
52
  # monitoring part of the code
53
+ import gradio as gr
54
+ from PIL import Image
55
+ import hopsworks
56
+
57
+ project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU")
58
+ fs = project.get_feature_store()
59
+ #h
60
+ dataset_api = project.get_dataset_api()
61
 
 
 
 
 
62
 
63
+ dataset_api.download("Resources/images/df_recent.png")
64
+ dataset_api.download("Resources/images/confusion_matrix.png")
 
 
65
 
66
+ with gr.Blocks() as demo:
67
+ with gr.Row():
68
+ with gr.Column():
69
+ gr.Label("Recent Prediction History")
70
+ input_img = gr.Image("df_recent.png", elem_id="recent-predictions")
71
+ with gr.Column():
72
+ gr.Label("Confusion Maxtrix with Historical Prediction Performance")
73
+ input_img = gr.Image("confusion_matrix.png", elem_id="confusion-matrix")
 
 
 
 
 
 
 
74
 
75
+ demo.launch()