Spaces:
Runtime error
Runtime error
gg2.0
Browse files
app.py
CHANGED
@@ -1,46 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
from PIL import Image
|
4 |
-
import requests
|
5 |
-
|
6 |
import hopsworks
|
7 |
-
import joblib
|
8 |
|
9 |
project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU")
|
10 |
fs = project.get_feature_store()
|
11 |
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
title="Iris Flower Predictive Analytics",
|
36 |
-
description="Experiment with sepal/petal lengths/widths to predict which flower it is.",
|
37 |
-
allow_flagging="never",
|
38 |
-
inputs=[
|
39 |
-
gr.inputs.Number(default=1.0, label="sepal length (cm)"),
|
40 |
-
gr.inputs.Number(default=1.0, label="sepal width (cm)"),
|
41 |
-
gr.inputs.Number(default=1.0, label="petal length (cm)"),
|
42 |
-
gr.inputs.Number(default=1.0, label="petal width (cm)"),
|
43 |
-
],
|
44 |
-
outputs=gr.Image(type="pil"))
|
45 |
-
|
46 |
-
demo.launch()
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import numpy as np
|
3 |
+
# from PIL import Image
|
4 |
+
# import requests
|
5 |
+
|
6 |
+
# import hopsworks
|
7 |
+
# import joblib
|
8 |
+
|
9 |
+
# project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU")
|
10 |
+
# fs = project.get_feature_store()
|
11 |
+
|
12 |
+
|
13 |
+
# mr = project.get_model_registry()
|
14 |
+
# model = mr.get_model("iris_modal", version=1)
|
15 |
+
# model_dir = model.download()
|
16 |
+
# model = joblib.load(model_dir + "/iris_model.pkl")
|
17 |
+
|
18 |
+
|
19 |
+
# def iris(sepal_length, sepal_width, petal_length, petal_width):
|
20 |
+
# input_list = []
|
21 |
+
# input_list.append(sepal_length)
|
22 |
+
# input_list.append(sepal_width)
|
23 |
+
# input_list.append(petal_length)
|
24 |
+
# input_list.append(petal_width)
|
25 |
+
# # 'res' is a list of predictions returned as the label.
|
26 |
+
# res = model.predict(np.asarray(input_list).reshape(1, -1))
|
27 |
+
# # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
|
28 |
+
# # the first element.
|
29 |
+
# flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
|
30 |
+
# img = Image.open(requests.get(flower_url, stream=True).raw)
|
31 |
+
# return img
|
32 |
+
|
33 |
+
# demo = gr.Interface(
|
34 |
+
# fn=iris,
|
35 |
+
# title="Iris Flower Predictive Analytics",
|
36 |
+
# description="Experiment with sepal/petal lengths/widths to predict which flower it is.",
|
37 |
+
# allow_flagging="never",
|
38 |
+
# inputs=[
|
39 |
+
# gr.inputs.Number(default=1.0, label="sepal length (cm)"),
|
40 |
+
# gr.inputs.Number(default=1.0, label="sepal width (cm)"),
|
41 |
+
# gr.inputs.Number(default=1.0, label="petal length (cm)"),
|
42 |
+
# gr.inputs.Number(default=1.0, label="petal width (cm)"),
|
43 |
+
# ],
|
44 |
+
# outputs=gr.Image(type="pil"))
|
45 |
+
|
46 |
+
# demo.launch()
|
47 |
+
|
48 |
import gradio as gr
|
|
|
49 |
from PIL import Image
|
|
|
|
|
50 |
import hopsworks
|
|
|
51 |
|
52 |
project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU")
|
53 |
fs = project.get_feature_store()
|
54 |
|
55 |
+
dataset_api = project.get_dataset_api()
|
56 |
|
57 |
+
dataset_api.download("Resources/images/latest_iris.png")
|
58 |
+
dataset_api.download("Resources/images/actual_iris.png")
|
59 |
+
dataset_api.download("Resources/images/df_recent.png")
|
60 |
+
dataset_api.download("Resources/images/confusion_matrix.png")
|
61 |
+
|
62 |
+
with gr.Blocks() as demo:
|
63 |
+
with gr.Row():
|
64 |
+
with gr.Column():
|
65 |
+
gr.Label("Today's Predicted Image")
|
66 |
+
input_img = gr.Image("latest_iris.png", elem_id="predicted-img")
|
67 |
+
with gr.Column():
|
68 |
+
gr.Label("Today's Actual Image")
|
69 |
+
input_img = gr.Image("actual_iris.png", elem_id="actual-img")
|
70 |
+
with gr.Row():
|
71 |
+
with gr.Column():
|
72 |
+
gr.Label("Recent Prediction History")
|
73 |
+
input_img = gr.Image("df_recent.png", elem_id="recent-predictions")
|
74 |
+
with gr.Column():
|
75 |
+
gr.Label("Confusion Maxtrix with Historical Prediction Performance")
|
76 |
+
input_img = gr.Image("confusion_matrix.png", elem_id="confusion-matrix")
|
77 |
+
|
78 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|