import gradio as gr import numpy as np from PIL import Image import requests import hopsworks import joblib project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU") fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("titanic_modal", version=1) model_dir = model.download() model = joblib.load(model_dir + "/titanic_model.pkl") def titanic(pclass, sex, age, sibsp, parch, fare, embarked): input_list = [] input_list.append(pclass) input_list.append(sex) input_list.append(age) input_list.append(sibsp) input_list.append(parch) input_list.append(fare) input_list.append(embarked) # 'res' is a list of predictions returned as the label. res = model.predict(np.asarray(input_list).reshape(1, -1)) # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # the first element. return res[0] # def iris(sepal_length, sepal_width, petal_length, petal_width): # input_list = [] # input_list.append(sepal_length) # input_list.append(sepal_width) # input_list.append(petal_length) # input_list.append(petal_width) # # 'res' is a list of predictions returned as the label. # res = model.predict(np.asarray(input_list).reshape(1, -1)) # # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # # the first element. # flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png" # img = Image.open(requests.get(flower_url, stream=True).raw) # return img demo = gr.Interface( fn=titanic, title="Titanic Predictive Analytics", description="Experiment to predict if a passenger survived the Titanic disaster", allow_flagging="never", inputs=[ gr.inputs.Number(default=1.0, label="PClass"), gr.inputs.Number(default=1.0, label="Sex"), gr.inputs.Number(default=1.0, label="Age"), gr.inputs.Number(default=1.0, label="SibSp"), gr.inputs.Number(default=1.0, label="Parch"), gr.inputs.Number(default=1.0, label="Fare"), gr.inputs.Number(default=1.0, label="Embarked") ], outputs=gr.Textbox()) demo.launch() # monitoring part of the code # import gradio as gr # from PIL import Image # import hopsworks # project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU") # fs = project.get_feature_store() # #h # dataset_api = project.get_dataset_api() # dataset_api.download("Resources/images/latest_iris.png") # dataset_api.download("Resources/images/actual_iris.png") # dataset_api.download("Resources/images/df_recent.png") # dataset_api.download("Resources/images/confusion_matrix.png") # with gr.Blocks() as demo: # with gr.Row(): # with gr.Column(): # gr.Label("Today's Predicted Image") # input_img = gr.Image("latest_iris.png", elem_id="predicted-img") # with gr.Column(): # gr.Label("Today's Actual Image") # input_img = gr.Image("actual_iris.png", elem_id="actual-img") # with gr.Row(): # with gr.Column(): # gr.Label("Recent Prediction History") # input_img = gr.Image("df_recent.png", elem_id="recent-predictions") # with gr.Column(): # gr.Label("Confusion Maxtrix with Historical Prediction Performance") # input_img = gr.Image("confusion_matrix.png", elem_id="confusion-matrix") # demo.launch()