# import gradio as gr # import numpy as np # from PIL import Image # import requests # import hopsworks # import joblib # project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU") # fs = project.get_feature_store() # mr = project.get_model_registry() # model = mr.get_model("iris_modal", version=1) # model_dir = model.download() # model = joblib.load(model_dir + "/iris_model.pkl") # def iris(sepal_length, sepal_width, petal_length, petal_width): # input_list = [] # input_list.append(sepal_length) # input_list.append(sepal_width) # input_list.append(petal_length) # input_list.append(petal_width) # # 'res' is a list of predictions returned as the label. # res = model.predict(np.asarray(input_list).reshape(1, -1)) # # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # # the first element. # flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png" # img = Image.open(requests.get(flower_url, stream=True).raw) # return img # demo = gr.Interface( # fn=iris, # title="Iris Flower Predictive Analytics", # description="Experiment with sepal/petal lengths/widths to predict which flower it is.", # allow_flagging="never", # inputs=[ # gr.inputs.Number(default=1.0, label="sepal length (cm)"), # gr.inputs.Number(default=1.0, label="sepal width (cm)"), # gr.inputs.Number(default=1.0, label="petal length (cm)"), # gr.inputs.Number(default=1.0, label="petal width (cm)"), # ], # outputs=gr.Image(type="pil")) # demo.launch() import gradio as gr from PIL import Image import hopsworks project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU") fs = project.get_feature_store() dataset_api = project.get_dataset_api() dataset_api.download("Resources/images/latest_iris.png") dataset_api.download("Resources/images/actual_iris.png") dataset_api.download("Resources/images/df_recent.png") dataset_api.download("Resources/images/confusion_matrix.png") with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr.Label("Today's Predicted Image") input_img = gr.Image("latest_iris.png", elem_id="predicted-img") with gr.Column(): gr.Label("Today's Actual Image") input_img = gr.Image("actual_iris.png", elem_id="actual-img") with gr.Row(): with gr.Column(): gr.Label("Recent Prediction History") input_img = gr.Image("df_recent.png", elem_id="recent-predictions") with gr.Column(): gr.Label("Confusion Maxtrix with Historical Prediction Performance") input_img = gr.Image("confusion_matrix.png", elem_id="confusion-matrix") demo.launch()