import gradio as gr import numpy as np from PIL import Image import requests import hopsworks import joblib # project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU") # fs = project.get_feature_store() # #q # mr = project.get_model_registry() # model = mr.get_model("titanic_modal", version=1) # model_dir = model.download() # model = joblib.load(model_dir + "/titanic_model.pkl") # def titanic(pclass, sex, age, sibsp, parch, fare, embarked): # input_list = [] # input_list.append(pclass) # input_list.append(sex) # input_list.append(age) # input_list.append(sibsp) # input_list.append(parch) # input_list.append(fare) # input_list.append(embarked) # # 'res' is a list of predictions returned as the label. # res = model.predict(np.asarray(input_list).reshape(1, -1)) # # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # # the first element. # return res[0] # demo = gr.Interface( # fn=titanic, # title="Titanic Predictive Analytics", # description="Experiment to predict if a passenger survived the Titanic disaster", # allow_flagging="never", # inputs=[ # gr.inputs.Number(default=1.0, label="PClass"), # gr.inputs.Number(default=1.0, label="Sex: Female = 0, Male = 1"), # gr.inputs.Number(default=1.0, label="Age"), # gr.inputs.Number(default=1.0, label="SibSp"), # gr.inputs.Number(default=1.0, label="Parch"), # gr.inputs.Number(default=1.0, label="Fare"), # gr.inputs.Number(default=1.0, label="Embarked: S = 0, C = 1, Q = 2"), # ], # outputs=gr.Textbox()) # demo.launch() # monitoring part of the code import gradio as gr from PIL import Image import hopsworks project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU") fs = project.get_feature_store() #s dataset_api = project.get_dataset_api() dataset_api.download("Resources/images/df_recent.png") dataset_api.download("Resources/images/confusion_matrix.png") with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr.Label("Recent Prediction History") input_img = gr.Image("df_recent.png", elem_id="recent-predictions") with gr.Column(): gr.Label("Confusion Maxtrix with Historical Prediction Performance") input_img = gr.Image("confusion_matrix.png", elem_id="confusion-matrix") demo.launch()