import gradio as gr import numpy as np from PIL import Image import requests import hopsworks import joblib project = hopsworks.login(api_key_value="otd1BvtKwvlF8OC1.Y8Kyt1QpZqDPMRNPIF3KvVGuFJpRdxIy39879ueQwymTgSDUU9vWKFMOnBqsyxfk") fs = project.get_feature_store() #q mr = project.get_model_registry() model = mr.get_model("titanic_modal", version=1) model_dir = model.download() model = joblib.load(model_dir + "/titanic_model.pkl") def titanic(pclass, sex, age, sibsp, parch, fare, embarked): input_list = [] input_list.append(pclass) input_list.append(sex) input_list.append(age) input_list.append(sibsp) input_list.append(parch) input_list.append(fare) input_list.append(embarked) # 'res' is a list of predictions returned as the label. res = model.predict(np.asarray(input_list).reshape(1, -1)) # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # the first element. ret_str = "Survived" if res[0] == 1 else "Not survived" return ret_str demo = gr.Interface( fn=titanic, title="Titanic Predictive Analytics", description="Experiment to predict if a passenger survived the Titanic disaster", allow_flagging="never", inputs=[ gr.inputs.Number(default=1.0, label="PClass"), gr.inputs.Number(default=1.0, label="Sex: Female = 0, Male = 1"), gr.inputs.Number(default=1.0, label="Age"), gr.inputs.Number(default=1.0, label="SibSp"), gr.inputs.Number(default=1.0, label="Parch"), gr.inputs.Number(default=1.0, label="Fare"), gr.inputs.Number(default=1.0, label="Embarked: S = 0, C = 1, Q = 2"), ], outputs=gr.Textbox()) demo.launch()