File size: 12,288 Bytes
b1754ef 8e69b68 b1754ef a8edd17 a17bd15 7100c36 296d2db 12a7264 f0b041f 36538f6 5368d19 3d27061 0f79421 3d27061 5368d19 3d27061 0f79421 3d27061 5368d19 36538f6 b1754ef a6d7a0b 53d9428 a6d7a0b b1754ef ddbca10 8ef8a1a b1754ef a8edd17 75ded75 d61423a b1754ef 75ded75 b1754ef cddd8a4 b1754ef cddd8a4 b1754ef f27ecc0 74d6517 b1754ef 7cff7cb 2a944fd 7cff7cb f0b041f 75ded75 b1754ef f0b041f b1754ef aaa67c1 55d67a5 b1754ef 7cff7cb b1754ef 4471a1a b1754ef e8d9658 b1754ef a6d7a0b 77cb3a8 b1754ef 5280e16 f0b041f b1754ef 3a90b17 aaa67c1 3a90b17 b1754ef 4c5bc27 076e71b 4c5bc27 8d7fcf7 076e71b 6209374 abb5ef5 296d2db c118720 244bfef 4c5bc27 cdab629 24f068c 5c020de c118720 7908868 b230877 d712e15 cdab629 076e71b 6209374 07c2661 abb5ef5 83c65af 076e71b abb5ef5 7908868 076e71b abb5ef5 076e71b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import os
import torch
import uuid
import requests
import streamlit as st
from streamlit.logger import get_logger
from auto_gptq import AutoGPTQForCausalLM
from langchain import HuggingFacePipeline, PromptTemplate
from langchain.chains import RetrievalQA
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from pdf2image import convert_from_path
from transformers import AutoTokenizer, TextStreamer, pipeline
from langchain.memory import ConversationBufferMemory
from gtts import gTTS
from io import BytesIO
from langchain.chains import ConversationalRetrievalChain
import streamlit.components.v1 as components
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.vectorstores.utils import filter_complex_metadata
import fitz
from PIL import Image
from langchain.vectorstores import FAISS
import transformers
from pydub import AudioSegment
from streamlit_extras.streaming_write import write
import time
import transformers
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translation_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
def english_to_hindi(sentence):
translation_tokenizer.src_lang = "en_xx"
encoded_hi = translation_tokenizer(sentence, return_tensors="pt")
generated_tokens = translation_model.generate(**encoded_hi, forced_bos_token_id=translation_tokenizer.lang_code_to_id["hi_IN"] )
return (translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True))
def hindi_to_english(sentence):
translation_tokenizer.src_lang = "hi_IN"
encoded_hi = translation_tokenizer(sentence, return_tensors="pt")
generated_tokens = translation_model.generate(**encoded_hi, forced_bos_token_id=translation_tokenizer.lang_code_to_id["en_XX"] )
return (translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True))
user_session_id = uuid.uuid4()
logger = get_logger(__name__)
st.set_page_config(page_title="Document QA by Dono", page_icon="🤖", )
st.session_state.disabled = False
st.title("Document QA by Dono")
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
@st.cache_data
def load_data():
loader = PyPDFDirectoryLoader("/home/user/app/niti/")
docs = loader.load()
return docs
@st.cache_resource
def load_model(_docs):
embeddings = HuggingFaceInstructEmbeddings(model_name="/home/user/app/all-MiniLM-L6-v2/",model_kwargs={"device":DEVICE})
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=256)
texts = text_splitter.split_documents(docs)
db = FAISS.from_documents(texts, embeddings)
#model_name_or_path = "/home/user/app/Llama-2-13B-chat-GPTQ/"
#model_name_or_path = "/home/user/app/codeLlama/"
model_basename = "model"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(
model_name_or_path,
#revision="gptq-8bit-128g-actorder_False",
revision="gptq-8bit-128g-actorder_True",
model_basename=model_basename,
use_safetensors=True,
trust_remote_code=True,
inject_fused_attention=False,
device=DEVICE,
quantize_config=None,
)
# DEFAULT_SYSTEM_PROMPT = """
# You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.
# Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content.
# Please ensure that your responses are socially unbiased and positive in nature.
# Always provide the citation for the answer from the text.
# Try to include any section or subsection present in the text responsible for the answer.
# Provide reference. Provide page number, section, sub section etc.
# If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
# Given a government document that outlines rules and regulations for a specific industry or sector, use your language model to answer questions about the rules and their applicability over time.
# The document may include provisions that take effect at different times, such as immediately upon publication, after a grace period, or on a specific date in the future.
# Your task is to identify the relevant rules and determine when they go into effect, taking into account any dependencies or exceptions that may apply.
# The current date is 14 September, 2023. Try to extract information which is closer to this date.
# Take a deep breath and work on this problem step-by-step.
# """.strip()
DEFAULT_SYSTEM_PROMPT = """
You are a helpful, respectful and honest assistant with knowledge of machine learning, data science, computer science, Python programming language, mathematics, probability and statistics.
""".strip()
def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
return f"""[INST] <<SYS>>{system_prompt}<</SYS>>{prompt} [/INST]""".strip()
# def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
# return f"""[INST] <<SYS>>{{ system_prompt }}<</SYS>>{{ prompt }} [/INST]""".strip()
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
text_pipeline = pipeline("text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=1024,
temperature=0.1,
top_p=0.95,
repetition_penalty=1.15,
streamer=streamer,)
llm = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0.1})
# SYSTEM_PROMPT = ("Use the following pieces of context to answer the question at the end. "
# "If you don't know the answer, just say that you don't know, "
# "don't try to make up an answer.")
SYSTEM_PROMPT = ("Use the following pieces of context along with general information you possess to answer the question at the end."
"If you don't know the answer, just say that you don't know, "
"don't try to make up an answer.")
template = generate_prompt("""{context} Question: {question} """,system_prompt=SYSTEM_PROMPT,) #Enter memory here!
prompt = PromptTemplate(template=template, input_variables=["context", "question"]) #Add history here
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=db.as_retriever(search_kwargs={"k": 3}),
return_source_documents=True,
chain_type_kwargs={"prompt": prompt,
"verbose": True})
print('load done')
return qa_chain
model_name_or_path = "Llama-2-13B-chat-GPTQ"
model_basename = "model"
st.session_state["llm_model"] = model_name_or_path
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def on_select():
st.session_state.disabled = True
def get_message_history():
for message in st.session_state.messages:
role, content = message["role"], message["content"]
yield f"{role.title()}: {content}"
docs = load_data()
qa_chain = load_model(docs)
if prompt := st.chat_input("How can I help you today?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
english_prompt = hindi_to_english(prompt)[0]
st.markdown(english_prompt)
with st.chat_message("assistant"):
with st.spinner(text="Looking for relevant answer"):
message_placeholder = st.empty()
full_response = ""
message_history = "\n".join(list(get_message_history())[-3:])
result = qa_chain(english_prompt)
output = [result['result']]
def generate_pdf():
page_number = int(result['source_documents'][0].metadata['page'])
doc = fitz.open(str(result['source_documents'][0].metadata['source']))
text = str(result['source_documents'][0].page_content)
if text != '':
for page in doc:
text_instances = page.search_for(text)
for inst in text_instances:
highlight = page.add_highlight_annot(inst)
highlight.update()
doc.save("/home/user/app/pdf2image/output.pdf", garbage=4, deflate=True, clean=True)
def pdf_page_to_image(pdf_file, page_number, output_image):
pdf_document = fitz.open(pdf_file)
page = pdf_document[page_number]
dpi = 300 # You can adjust this as needed
pix = page.get_pixmap(matrix=fitz.Matrix(dpi / 100, dpi / 100))
pix.save(output_image, "png")
pdf_document.close()
pdf_page_to_image('/home/user/app/pdf2image/output.pdf', page_number, '/home/user/app/pdf2image/output.png')
#image = Image.open('/home/user/app/pdf2image/output.png')
#message_placeholder.image(image)
#st.session_state.reference = True
# def generate_audio():
# with open('/home/user/app/audio/audio.mp3','wb') as sound_file:
# tts = gTTS(result['result'], lang='en', tld='co.in')
# tts.write_to_fp(sound_file)
# sound = AudioSegment.from_mp3("/home/user/app/audio/audio.mp3")
# sound.export("/home/user/app/audio/audio.wav", format="wav")
st.session_state['reference'] = '/home/user/app/pdf2image/default_output.png'
st.session_state['audio'] = ''
# def stream_example():
# for word in result['result'].split():
# st.write(word+' ')
# #yield word + " "
# time.sleep(0.1)
# complete_sentence = ''
# for word in result['result'].split():
# complete_sentence = complete_sentence + word
# message_placeholder.markdown(complete_sentence + " ▌ ")
# message_placeholder.markdown(complete_sentence+' ')
# #yield word + " "
# time.sleep(0.1)
for item in output:
full_response += item
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
# message_placeholder.markdown(result['source_documents'])
#stream_example()
# for item in output:
# full_response += item
# message_placeholder.markdown(write(stream_example))
#write(stream_example)
#message_placeholder.markdown(english_to_hindi(output[0])[0])
# sound_file = BytesIO()
# tts = gTTS(result['result'], lang='en')
# tts.write_to_fp(sound_file)
# st.audio(sound_file)
if "reference" not in st.session_state:
st.session_state.reference = False
if "audio" not in st.session_state:
st.session_state.audio = False
with st.sidebar:
choice = st.radio("References",["Reference"])
if choice == 'Reference':
generate_pdf()
st.session_state['reference'] = '/home/user/app/pdf2image/output.png'
st.image(st.session_state['reference'])
#st.write('Book name')
# if choice == 'TTS':
# with open('/home/user/app/audio/audio.mp3','wb') as sound_file:
# tts = gTTS(result['result'], lang='en', tld = 'co.in')
# tts.write_to_fp(sound_file)
# sound = AudioSegment.from_mp3("/home/user/app/audio/audio.mp3")
# sound.export("/home/user/app/audio/audio.wav", format="wav")
# st.session_state['audio'] = '/home/user/app/audio/audio.wav'
# st.audio(st.session_state['audio'])
st.session_state.messages.append({"role": "assistant", "content": full_response})
|