File size: 12,288 Bytes
b1754ef
8e69b68
b1754ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8edd17
a17bd15
7100c36
296d2db
12a7264
f0b041f
36538f6
 
 
 
 
 
5368d19
3d27061
0f79421
3d27061
 
5368d19
 
 
3d27061
0f79421
3d27061
 
5368d19
36538f6
b1754ef
 
 
 
 
 
 
 
 
a6d7a0b
 
53d9428
a6d7a0b
 
b1754ef
 
ddbca10
8ef8a1a
b1754ef
 
a8edd17
75ded75
 
d61423a
b1754ef
 
 
 
 
 
75ded75
 
b1754ef
 
 
 
 
 
 
 
cddd8a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1754ef
cddd8a4
b1754ef
 
 
f27ecc0
 
 
 
74d6517
b1754ef
 
7cff7cb
 
 
 
2a944fd
7cff7cb
 
 
f0b041f
 
75ded75
 
 
 
 
 
b1754ef
 
 
 
 
 
f0b041f
b1754ef
 
aaa67c1
55d67a5
 
b1754ef
 
 
7cff7cb
b1754ef
 
 
 
 
 
4471a1a
b1754ef
 
 
 
 
 
 
 
 
e8d9658
b1754ef
 
 
 
 
 
a6d7a0b
 
77cb3a8
b1754ef
 
 
5280e16
f0b041f
b1754ef
3a90b17
 
 
 
aaa67c1
3a90b17
b1754ef
4c5bc27
 
 
 
 
 
 
 
 
 
 
076e71b
4c5bc27
 
 
 
 
 
 
 
 
 
 
8d7fcf7
 
076e71b
6209374
 
 
 
 
 
abb5ef5
 
 
296d2db
c118720
 
 
 
 
 
244bfef
 
 
 
 
 
 
4c5bc27
cdab629
 
 
 
24f068c
5c020de
c118720
7908868
 
b230877
 
 
 
d712e15
cdab629
076e71b
6209374
 
 
 
07c2661
abb5ef5
 
 
 
 
 
 
83c65af
076e71b
abb5ef5
 
 
 
7908868
076e71b
abb5ef5
 
 
 
 
 
 
 
076e71b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import torch
import uuid
import requests
import streamlit as st
from streamlit.logger import get_logger
from auto_gptq import AutoGPTQForCausalLM
from langchain import HuggingFacePipeline, PromptTemplate
from langchain.chains import RetrievalQA
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from pdf2image import convert_from_path
from transformers import AutoTokenizer, TextStreamer, pipeline
from langchain.memory import ConversationBufferMemory
from gtts import gTTS
from io import BytesIO
from langchain.chains import ConversationalRetrievalChain
import streamlit.components.v1 as components
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.vectorstores.utils import filter_complex_metadata
import fitz
from PIL import Image
from langchain.vectorstores import FAISS
import transformers
from pydub import AudioSegment
from streamlit_extras.streaming_write import write
import time

import transformers
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translation_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")


def english_to_hindi(sentence):
    translation_tokenizer.src_lang = "en_xx"
    encoded_hi = translation_tokenizer(sentence, return_tensors="pt")
    generated_tokens = translation_model.generate(**encoded_hi, forced_bos_token_id=translation_tokenizer.lang_code_to_id["hi_IN"] )
    return (translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True))


def hindi_to_english(sentence):
    translation_tokenizer.src_lang = "hi_IN"
    encoded_hi = translation_tokenizer(sentence, return_tensors="pt")
    generated_tokens = translation_model.generate(**encoded_hi, forced_bos_token_id=translation_tokenizer.lang_code_to_id["en_XX"] )
    return (translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True))


user_session_id = uuid.uuid4()

logger = get_logger(__name__)
st.set_page_config(page_title="Document QA by Dono", page_icon="🤖",  )
st.session_state.disabled = False
st.title("Document QA by Dono")
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"


@st.cache_data
def load_data():
    loader = PyPDFDirectoryLoader("/home/user/app/niti/")
    docs = loader.load()
    return docs

@st.cache_resource
def load_model(_docs):
    embeddings = HuggingFaceInstructEmbeddings(model_name="/home/user/app/all-MiniLM-L6-v2/",model_kwargs={"device":DEVICE})
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=256)
    texts = text_splitter.split_documents(docs)
    db = FAISS.from_documents(texts, embeddings)
    #model_name_or_path = "/home/user/app/Llama-2-13B-chat-GPTQ/"
    #model_name_or_path = "/home/user/app/codeLlama/"

    model_basename = "model"

    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

    model = AutoGPTQForCausalLM.from_quantized(
        model_name_or_path,
        #revision="gptq-8bit-128g-actorder_False",
        revision="gptq-8bit-128g-actorder_True",
        model_basename=model_basename,
        use_safetensors=True,
        trust_remote_code=True,
        inject_fused_attention=False,
        device=DEVICE,
        quantize_config=None,
    )

    # DEFAULT_SYSTEM_PROMPT = """
    # You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. 
    # Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. 
    # Please ensure that your responses are socially unbiased and positive in nature. 
    # Always provide the citation for the answer from the text. 
    # Try to include any section or subsection present in the text responsible for the answer. 
    # Provide reference. Provide page number, section, sub section etc.
    # If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. 
    # Given a government document that outlines rules and regulations for a specific industry or sector, use your language model to answer questions about the rules and their applicability over time. 
    # The document may include provisions that take effect at different times, such as immediately upon publication, after a grace period, or on a specific date in the future. 
    # Your task is to identify the relevant rules and determine when they go into effect, taking into account any dependencies or exceptions that may apply.
    # The current date is 14 September, 2023. Try to extract information which is closer to this date.
    # Take a deep breath and work on this problem step-by-step. 
    # """.strip()


    DEFAULT_SYSTEM_PROMPT = """
    You are a helpful, respectful and honest assistant with knowledge of machine learning, data science, computer science, Python programming language, mathematics, probability and statistics.
    """.strip()

    def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
        return f"""[INST] <<SYS>>{system_prompt}<</SYS>>{prompt} [/INST]""".strip()

    # def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
    #     return f"""[INST] <<SYS>>{{ system_prompt }}<</SYS>>{{ prompt }} [/INST]""".strip()


    streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    text_pipeline = pipeline("text-generation",
                             model=model,
                             tokenizer=tokenizer,
                             max_new_tokens=1024,
                             temperature=0.1,
                             top_p=0.95,
                             repetition_penalty=1.15,
                             streamer=streamer,)
    llm = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0.1})

    # SYSTEM_PROMPT = ("Use the following pieces of context to answer the question at the end. "
    #                  "If you don't know the answer, just say that you don't know, "
    #                  "don't try to make up an answer.")
    SYSTEM_PROMPT = ("Use the following pieces of context along with general information you possess to answer the question at the end."
                 "If you don't know the answer, just say that you don't know, "
                 "don't try to make up an answer.")

    template = generate_prompt("""{context}  Question: {question} """,system_prompt=SYSTEM_PROMPT,) #Enter memory here!
    prompt = PromptTemplate(template=template, input_variables=["context",  "question"]) #Add history here
    qa_chain = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=db.as_retriever(search_kwargs={"k": 3}),
        return_source_documents=True,
        chain_type_kwargs={"prompt": prompt,
                           "verbose": True})

    print('load done')
    return qa_chain


model_name_or_path = "Llama-2-13B-chat-GPTQ"
model_basename = "model"

st.session_state["llm_model"] = model_name_or_path

if "messages" not in st.session_state:
    st.session_state.messages = []


for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])


def on_select():
    st.session_state.disabled = True


def get_message_history():
    for message in st.session_state.messages:
        role, content = message["role"], message["content"]
        yield f"{role.title()}: {content}"


docs = load_data()
qa_chain = load_model(docs)

if prompt := st.chat_input("How can I help you today?"):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        english_prompt = hindi_to_english(prompt)[0]
        st.markdown(english_prompt)
    with st.chat_message("assistant"):
        with st.spinner(text="Looking for relevant answer"):
            message_placeholder = st.empty()
            full_response = ""
            message_history = "\n".join(list(get_message_history())[-3:])
            result = qa_chain(english_prompt)
            output = [result['result']]

    def generate_pdf():
        page_number = int(result['source_documents'][0].metadata['page'])
        doc = fitz.open(str(result['source_documents'][0].metadata['source']))
        text = str(result['source_documents'][0].page_content)
        if text != '':
            for page in doc:
                text_instances = page.search_for(text)
                for inst in text_instances:
                    highlight = page.add_highlight_annot(inst)
                    highlight.update()
        doc.save("/home/user/app/pdf2image/output.pdf", garbage=4, deflate=True, clean=True)

        def pdf_page_to_image(pdf_file, page_number, output_image):
            pdf_document = fitz.open(pdf_file)
            page = pdf_document[page_number]
            dpi = 300  # You can adjust this as needed
            pix = page.get_pixmap(matrix=fitz.Matrix(dpi / 100, dpi / 100))
            pix.save(output_image, "png")
            pdf_document.close()
        pdf_page_to_image('/home/user/app/pdf2image/output.pdf', page_number, '/home/user/app/pdf2image/output.png')
        #image = Image.open('/home/user/app/pdf2image/output.png')
        #message_placeholder.image(image)
        #st.session_state.reference = True



    # def generate_audio():
    #     with open('/home/user/app/audio/audio.mp3','wb') as sound_file:
    #         tts = gTTS(result['result'], lang='en', tld='co.in')
    #         tts.write_to_fp(sound_file)
    #     sound = AudioSegment.from_mp3("/home/user/app/audio/audio.mp3")
    #     sound.export("/home/user/app/audio/audio.wav", format="wav")

    st.session_state['reference'] = '/home/user/app/pdf2image/default_output.png'
    st.session_state['audio'] = ''

    # def stream_example():
    # for word in result['result'].split():
    #     st.write(word+' ')
    #     #yield word + " "
    #     time.sleep(0.1)

    # complete_sentence = ''
    # for word in result['result'].split():
    #     complete_sentence = complete_sentence + word
    #     message_placeholder.markdown(complete_sentence + " ▌ ")
    #     message_placeholder.markdown(complete_sentence+' ')
    #     #yield word + " "
    #     time.sleep(0.1)
    
    for item in output:
        full_response += item
        message_placeholder.markdown(full_response + "▌")
        message_placeholder.markdown(full_response)
        # message_placeholder.markdown(result['source_documents'])
    
    #stream_example()


    # for item in output:
    #     full_response += item
    #     message_placeholder.markdown(write(stream_example))

    #write(stream_example)
    #message_placeholder.markdown(english_to_hindi(output[0])[0])

    # sound_file = BytesIO()
    # tts = gTTS(result['result'], lang='en')
    # tts.write_to_fp(sound_file)
    # st.audio(sound_file)  
    
    if "reference" not in st.session_state:
        st.session_state.reference = False
    if "audio" not in st.session_state:
        st.session_state.audio = False


    with st.sidebar:
        choice = st.radio("References",["Reference"])

        if choice == 'Reference':
            generate_pdf()
            st.session_state['reference'] = '/home/user/app/pdf2image/output.png'
            st.image(st.session_state['reference'])
            #st.write('Book name')

        # if choice == 'TTS':
        #     with open('/home/user/app/audio/audio.mp3','wb') as sound_file:
        #         tts = gTTS(result['result'], lang='en', tld = 'co.in')
        #         tts.write_to_fp(sound_file)
        #     sound = AudioSegment.from_mp3("/home/user/app/audio/audio.mp3")
        #     sound.export("/home/user/app/audio/audio.wav", format="wav")
        #     st.session_state['audio'] = '/home/user/app/audio/audio.wav'
        #     st.audio(st.session_state['audio'])

    st.session_state.messages.append({"role": "assistant", "content": full_response})