vishwask commited on
Commit
57dc958
β€’
1 Parent(s): 2b3c311

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -15
app.py CHANGED
@@ -1,3 +1,6 @@
 
 
 
1
 
2
  #__import__('pysqlite3')
3
  #import sys
@@ -66,7 +69,7 @@ print(len(docs))
66
  def load_model():
67
  #embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-large",model_kwargs={"device":DEVICE})
68
  embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",model_kwargs={"device":DEVICE})
69
-
70
 
71
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=256)
72
  texts = text_splitter.split_documents(docs)
@@ -134,7 +137,7 @@ def load_model():
134
  qa_chain = RetrievalQA.from_chain_type(
135
  llm=llm,
136
  chain_type="stuff",
137
- retriever=db.as_retriever(search_kwargs={"k": 2}),
138
  return_source_documents=True,
139
  chain_type_kwargs={"prompt": prompt,
140
  "verbose": False,
@@ -181,6 +184,8 @@ def get_message_history():
181
 
182
  qa_chain = load_model()
183
 
 
 
184
  if prompt := st.chat_input("How can I help you today?"):
185
  st.session_state.messages.append({"role": "user", "content": prompt})
186
  with st.chat_message("user"):
@@ -192,7 +197,11 @@ if prompt := st.chat_input("How can I help you today?"):
192
  logger.info(f"{user_session_id} Message History: {message_history}")
193
  # question = st.text_input("Ask your question", placeholder="Try to include context in your question",
194
  # disabled=not uploaded_file,)
 
 
195
  result = qa_chain(prompt)
 
 
196
  sound_file = BytesIO()
197
  tts = gTTS(result['result'], lang='en')
198
  tts.write_to_fp(sound_file)
@@ -205,7 +214,8 @@ if prompt := st.chat_input("How can I help you today?"):
205
  #st.write(repr(result['source_documents'][0].metadata['page']))
206
  #st.write(repr(result['source_documents'][0]))
207
 
208
-
 
209
  ### READ IN PDF
210
  page_number = int(result['source_documents'][0].metadata['page'])
211
  doc = fitz.open(str(result['source_documents'][0].metadata['source']))
@@ -296,18 +306,18 @@ if prompt := st.chat_input("How can I help you today?"):
296
  # """
297
  # message_placeholder.markdown(html_string, unsafe_allow_html=True) # will display a st.audio with the sound you specified in the "src" of the html_string and autoplay it
298
  # #time.sleep(5) # wait for 2 seconds to finish the playing of the audio
299
- response_sentiment = st.radio(
300
- "How was the Assistant's response?",
301
- ["😁", "πŸ˜•", "😒"],
302
- key="response_sentiment",
303
- disabled=st.session_state.disabled,
304
- horizontal=True,
305
- index=1,
306
- help="This helps us improve the model.",
307
- # hide the radio button on click
308
- on_change=on_select(),
309
- )
310
- logger.info(f"{user_session_id} | {full_response} | {response_sentiment}")
311
 
312
  # # Logging to FastAPI Endpoint
313
  # headers = {"Authorization": f"Bearer {secret_token}"}
 
1
+ import time
2
+ print('1')
3
+ print(time.time())
4
 
5
  #__import__('pysqlite3')
6
  #import sys
 
69
  def load_model():
70
  #embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-large",model_kwargs={"device":DEVICE})
71
  embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",model_kwargs={"device":DEVICE})
72
+ print(DEVICE)
73
 
74
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=256)
75
  texts = text_splitter.split_documents(docs)
 
137
  qa_chain = RetrievalQA.from_chain_type(
138
  llm=llm,
139
  chain_type="stuff",
140
+ retriever=db.as_retriever(search_kwargs={"k": 5}),
141
  return_source_documents=True,
142
  chain_type_kwargs={"prompt": prompt,
143
  "verbose": False,
 
184
 
185
  qa_chain = load_model()
186
 
187
+ print('2')
188
+ print(time.time())
189
  if prompt := st.chat_input("How can I help you today?"):
190
  st.session_state.messages.append({"role": "user", "content": prompt})
191
  with st.chat_message("user"):
 
197
  logger.info(f"{user_session_id} Message History: {message_history}")
198
  # question = st.text_input("Ask your question", placeholder="Try to include context in your question",
199
  # disabled=not uploaded_file,)
200
+ print('3')
201
+ print(time.time())
202
  result = qa_chain(prompt)
203
+ print('4')
204
+ print(time.time())
205
  sound_file = BytesIO()
206
  tts = gTTS(result['result'], lang='en')
207
  tts.write_to_fp(sound_file)
 
214
  #st.write(repr(result['source_documents'][0].metadata['page']))
215
  #st.write(repr(result['source_documents'][0]))
216
 
217
+ print('5')
218
+ print(time.time())
219
  ### READ IN PDF
220
  page_number = int(result['source_documents'][0].metadata['page'])
221
  doc = fitz.open(str(result['source_documents'][0].metadata['source']))
 
306
  # """
307
  # message_placeholder.markdown(html_string, unsafe_allow_html=True) # will display a st.audio with the sound you specified in the "src" of the html_string and autoplay it
308
  # #time.sleep(5) # wait for 2 seconds to finish the playing of the audio
309
+ #response_sentiment = st.radio(
310
+ # "How was the Assistant's response?",
311
+ # ["😁", "πŸ˜•", "😒"],
312
+ # key="response_sentiment",
313
+ # disabled=st.session_state.disabled,
314
+ # horizontal=True,
315
+ # index=1,
316
+ # help="This helps us improve the model.",
317
+ # # hide the radio button on click
318
+ # on_change=on_select(),
319
+ #)
320
+ #logger.info(f"{user_session_id} | {full_response} | {response_sentiment}")
321
 
322
  # # Logging to FastAPI Endpoint
323
  # headers = {"Authorization": f"Bearer {secret_token}"}