File size: 7,239 Bytes
68ced40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02c8316
68ced40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02c8316
68ced40
 
 
 
 
 
 
 
02c8316
68ced40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import numpy as np
import pandas as pd
from sklearn import linear_model
import streamlit as st
from st_cytoscape import cytoscape

num_observations = 10_000
generating_model = """
Z <-- N
C1 <-- N
C21 <-- N
C31 <-- N
C33 <-- N
C22 <-- C21 + N
C32 <-- C31 + C33 + N
X <-- Z + C1 + C21 + C31 + N
M <-- X + N
Y <-- M + C1 + C22 + C33 + N
C4 <-- X + Y + N
"""


def rewrite(x):
    if x == "N":
        return "np.random.randn(num_observations)"
    else:
        return f'd["{x}"]'


@st.cache_data
def generate_data():
    np.random.seed(seed=0)
    d = {}
    nodes = set()
    edges = set()
    for line in generating_model.split("\n"):
        if " <-- " in line:
            left, right = line.split(" <-- ")
            right_terms = right.split(" + ")
            nodes.add(left)
            for node in right_terms:
                if node != "N":
                    nodes.add(node)
                    edges.add((node, left))
            formula = f"{rewrite(left)} = {' + '.join(list(map(rewrite, right_terms)))}"
            exec(formula)
    return pd.DataFrame.from_dict(d), nodes, edges


df, nodes, edges = generate_data()
elements = []
for node in nodes:
    elements.append(
        {
            "data": {"id": node},
            "selected": node == "X",
            "selectable": node not in ["X", "Y"],
        }
    )
for edge in edges:
    elements.append(
        {
            "data": {
                "source": edge[0],
                "target": edge[1],
                "id": f"{edge[0]}-{edge[1]}",
            },
            "selectable": False,
        }
    )
stylesheet = [
    {"selector": "node", "style": {"label": "data(id)", "width": 20, "height": 20}},
    {
        "selector": "edge",
        "style": {
            "width": 2,
            "curve-style": "bezier",
            "target-arrow-shape": "triangle",
        },
    },
]

layout = {"name": "fcose", "animationDuration": 0}
layout["alignmentConstraint"] = {"horizontal": [["Z", "X", "M", "Y"]]}
layout["relativePlacementConstraint"] = [{"left": "X", "right": "Y"}]
layout["relativePlacementConstraint"].append({"top": "C1", "bottom": "X"})
layout["relativePlacementConstraint"].append({"top": "C21", "bottom": "X"})
layout["relativePlacementConstraint"].append({"top": "X", "bottom": "C4"})
layout["relativePlacementConstraint"].append({"top": "X", "bottom": "C31"})
layout["nodeRepulsion"] = 50000

st.sidebar.title("Causal simulator")

st.sidebar.markdown(
    """
**Estimating the effect of a variable X** (e.g. vaccination status) **on another variable Y** (e.g. symptoms) **may require controlling for other variables** (e.g. age if age increases both access to the vaccine and the risks of getting sick).

This demo illustrates that **the choice of the variables to control for critically depends on the causal relationships between the variables**.

*Inspired by [The Book of Why](http://bayes.cs.ucla.edu/WHY/) by Judea Pearl and Dana Mackenzie and built by [Vivien](https://twitter.com/vivien000000) with [Streamlit](https://streamlit.io/), [Cytoscape.js](https://js.cytoscape.org/) and [scikit-learn](https://scikit-learn.org/stable/)*
"""
)

st.subheader("Data generating process")

st.markdown(
    """
10,000 observations have been generated for the variables mentioned in the causal graph below. The values for each variable were derived from the values of its parents in the causal graph as follows:
"""
)
st.latex(
    "U = \sum_{V \in \mathrm{\ Parents}(U)} V + \epsilon_U  \quad \mathrm{where} \quad \epsilon_U \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, 1)"
)
st.subheader("Results of controlling for certain variables")

st.markdown(
    "We are using a linear regression to estimate the effect on Y of increasing X by one unit. In the causal graph below, **select the variables to include in the regression and see whether the regression coefficient for X matches the expected value (1, given the data generating process)**."
)


def add_smiley(x):
    return x + (" πŸ˜€" if np.abs(float(x) - 1) < 0.1 else " 😨")


col1, col2 = st.columns(2)
order = ["X"] + sorted([n for n in nodes if n not in ["X", "Y"]])
results = {v: "" for v in order}
with col1:
    selected = cytoscape(
        elements,
        stylesheet,
        height="450px",
        layout=layout,
        selection_type="additive",
        user_panning_enabled=False,
        user_zooming_enabled=False,
        key="graph",
    )
try:
    selected_nodes = [n for n in order if n in selected["nodes"]]
    regr = linear_model.LinearRegression()
    regr.fit(df[selected_nodes], df[["Y"]])
    for i in range(len(regr.feature_names_in_)):
        results[regr.feature_names_in_[i]] = "%.3f" % regr.coef_[0, i]
    results["X"] = add_smiley(results["X"])
    with col2:
        table = "<table style='margin: auto;'><tbody>"
        table += "<tr><td colspan=2><b>Regression coefficients</b></td></tr>"
        for k in order:
            table += f"<tr><td>{k}</td><td>{results[k]}</td></tr>"
        table += "</table></tbody>"
        st.markdown(table, unsafe_allow_html=True)
except TypeError:
    pass


@st.cache_data
def compute_instrumental_variable():
    regr = linear_model.LinearRegression()
    regr2 = linear_model.LinearRegression()
    regr.fit(df[["Z"]], df[["Y"]])
    regr2.fit(df[["Z"]], df[["X"]])
    return "%.3f" % (regr.coef_[0, 0] / regr2.coef_[0, 0])


@st.cache_data
def compute_front_door():
    regr = linear_model.LinearRegression()
    regr2 = linear_model.LinearRegression()
    regr.fit(df[["M", "X"]], df[["Y"]])
    regr2.fit(df[["X"]], df[["M"]])
    index_m = [i for i in range(2) if regr.feature_names_in_[i] == "M"][0]
    return "%.3f" % (regr.coef_[0, index_m] * regr2.coef_[0, 0])


result_instrumental_variable = add_smiley(compute_instrumental_variable())
result_front_door = add_smiley(compute_front_door())

with st.expander("What variables should be controlled for?"):
    st.markdown(
        """The ***back-door criterion*** (*Book of Why*, chapter 4) provides sufficient conditions for variables to be adequate controls:
- The non-causal paths between X and Y going through C1, C21 and C22 need to be blocked by controlling for **C1**, as well as for **C21 or C22** or both;
- C4 and C32 are *colliders* (common consequences of their two respective neighbors). The 2 non-causal paths going through them are then blocked as long as C4 and C32 are not controlled for. Therefore, C4, C31, C32 and C33 should not be controlled for. However, if C32 is controlled for, C31 or C33 or both should be controlled for to block the non-causal path now open;
- M is on a causal path from X to Y and should not be controlled for (so that the causal effect of X on Y is not masked);
- Z is only a cause of X. Controlling for it is useless.
"""
    )
with st.expander("Bonus: front-door criterion and instrumental variable"):
    st.markdown(
        f"""
If using the back-door criterion as described above is impossible, we can deduce from the causal diagram that two alternative methods are available:
- the use of the ***instrumental variable*** Z (result: {result_instrumental_variable})
- the ***front-door criterion*** (*Book of Why*, chapter 5) with M as a mediator (result: {result_front_door})
"""
    )