Vivien commited on
Commit
2b2d081
β€’
1 Parent(s): 59d2750

Initial commit

Browse files
Files changed (7) hide show
  1. .gitattributes +2 -0
  2. README.md +4 -4
  3. app.py +147 -0
  4. embeddings.npy +3 -0
  5. embeddings2.npy +3 -0
  6. movies.csv +3 -0
  7. requirements.txt +5 -0
.gitattributes CHANGED
@@ -3,6 +3,7 @@
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
  *.bin.* filter=lfs diff=lfs merge=lfs -text
5
  *.bz2 filter=lfs diff=lfs merge=lfs -text
 
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
7
  *.gz filter=lfs diff=lfs merge=lfs -text
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
@@ -10,6 +11,7 @@
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
  *.model filter=lfs diff=lfs merge=lfs -text
12
  *.msgpack filter=lfs diff=lfs merge=lfs -text
 
13
  *.onnx filter=lfs diff=lfs merge=lfs -text
14
  *.ot filter=lfs diff=lfs merge=lfs -text
15
  *.parquet filter=lfs diff=lfs merge=lfs -text
 
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
  *.bin.* filter=lfs diff=lfs merge=lfs -text
5
  *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.csv filter=lfs diff=lfs merge=lfs -text
7
  *.ftz filter=lfs diff=lfs merge=lfs -text
8
  *.gz filter=lfs diff=lfs merge=lfs -text
9
  *.h5 filter=lfs diff=lfs merge=lfs -text
 
11
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
12
  *.model filter=lfs diff=lfs merge=lfs -text
13
  *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
  *.onnx filter=lfs diff=lfs merge=lfs -text
16
  *.ot filter=lfs diff=lfs merge=lfs -text
17
  *.parquet filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,13 +1,13 @@
1
  ---
2
- title: Semanticsearch
3
- emoji: πŸ‘
4
  colorFrom: purple
5
- colorTo: indigo
6
  sdk: streamlit
7
  sdk_version: 1.2.0
8
  app_file: app.py
9
  pinned: false
10
- license: cc-by-4.0
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
1
  ---
2
+ title: Semantic Search
3
+ emoji: πŸ“–
4
  colorFrom: purple
5
+ colorTo: red
6
  sdk: streamlit
7
  sdk_version: 1.2.0
8
  app_file: app.py
9
  pinned: false
10
+ license: cc-by-nc-4.0
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
app.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import re
3
+ import pandas as pd
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from transformers import AutoTokenizer, AutoModel
8
+ from tokenizers import Tokenizer, AddedToken
9
+ import streamlit as st
10
+ from st_click_detector import click_detector
11
+
12
+ DEVICE = "cpu"
13
+ MODEL_OPTIONS = ["msmarco-distilbert-base-tas-b", "all-mpnet-base-v2"]
14
+ DESCRIPTION = """
15
+ # Semantic search
16
+
17
+ **Enter your query and hit enter**
18
+
19
+ Built with πŸ€— Hugging Face's [transformers](https://huggingface.co/transformers/) library, [SentenceBert](https://www.sbert.net/) models, [Streamlit](https://streamlit.io/) and 44k movie descriptions from the Kaggle [Movies Dataset](https://www.kaggle.com/rounakbanik/the-movies-dataset)
20
+ """
21
+
22
+
23
+ @st.cache(
24
+ show_spinner=False,
25
+ hash_funcs={
26
+ AutoModel: lambda _: None,
27
+ AutoTokenizer: lambda _: None,
28
+ dict: lambda _: None,
29
+ },
30
+ )
31
+ def load():
32
+ models, tokenizers, embeddings = [], [], []
33
+ for model_option in MODEL_OPTIONS:
34
+ tokenizers.append(
35
+ AutoTokenizer.from_pretrained(f"sentence-transformers/{model_option}")
36
+ )
37
+ models.append(
38
+ AutoModel.from_pretrained(f"sentence-transformers/{model_option}").to(
39
+ DEVICE
40
+ )
41
+ )
42
+ embeddings.append(np.load("embeddings.npy"))
43
+ embeddings.append(np.load("embeddings2.npy"))
44
+ df = pd.read_csv("movies.csv")
45
+ return tokenizers, models, embeddings, df
46
+
47
+
48
+ tokenizers, models, embeddings, df = load()
49
+
50
+
51
+ def pooling(model_output):
52
+ return model_output.last_hidden_state[:, 0]
53
+
54
+
55
+ def compute_embeddings(texts):
56
+ encoded_input = tokenizers[0](
57
+ texts, padding=True, truncation=True, return_tensors="pt"
58
+ ).to(DEVICE)
59
+
60
+ with torch.no_grad():
61
+ model_output = models[0](**encoded_input, return_dict=True)
62
+
63
+ embeddings = pooling(model_output)
64
+
65
+ return embeddings.cpu().numpy()
66
+
67
+
68
+ def pooling2(model_output, attention_mask):
69
+ token_embeddings = model_output[0]
70
+ input_mask_expanded = (
71
+ attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
72
+ )
73
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
74
+ input_mask_expanded.sum(1), min=1e-9
75
+ )
76
+
77
+
78
+ def compute_embeddings2(list_of_strings):
79
+ encoded_input = tokenizers[1](
80
+ list_of_strings, padding=True, truncation=True, return_tensors="pt"
81
+ ).to(DEVICE)
82
+ with torch.no_grad():
83
+ model_output = models[1](**encoded_input)
84
+ sentence_embeddings = pooling2(model_output, encoded_input["attention_mask"])
85
+ return F.normalize(sentence_embeddings, p=2, dim=1).cpu().numpy()
86
+
87
+
88
+ @st.cache(
89
+ show_spinner=False,
90
+ hash_funcs={Tokenizer: lambda _: None, AddedToken: lambda _: None},
91
+ )
92
+ def semantic_search(query, model_id):
93
+ start = time.time()
94
+ if len(query.strip()) == 0:
95
+ return ""
96
+ if "[Similar:" not in query:
97
+ if model_id == 0:
98
+ query_embedding = compute_embeddings([query])
99
+ else:
100
+ query_embedding = compute_embeddings2([query])
101
+ else:
102
+ match = re.match(r"\[Similar:(\d{1,5}).*", query)
103
+ if match:
104
+ idx = int(match.groups()[0])
105
+ query_embedding = embeddings[model_id][idx : idx + 1, :]
106
+ if query_embedding.shape[0] == 0:
107
+ return ""
108
+ else:
109
+ return ""
110
+ indices = np.argsort(embeddings[model_id] @ np.transpose(query_embedding)[:, 0])[
111
+ -1:-11:-1
112
+ ]
113
+ if len(indices) == 0:
114
+ return ""
115
+ result = "<ol>"
116
+ for i in indices:
117
+ result += f"<li style='padding-top: 10px'><b>{df.iloc[i].title}</b> ({df.iloc[i].release_date}). {df.iloc[i].overview} "
118
+ result += f"<a id='{i}' href='#'>Similar movies</a></li>"
119
+ delay = "%.3f" % (time.time() - start)
120
+ return f"<p><i>Computation time: {delay} seconds</i></p>{result}</ol>"
121
+
122
+
123
+ st.sidebar.markdown(DESCRIPTION)
124
+
125
+ model_choice = st.sidebar.selectbox("Similarity model", options=MODEL_OPTIONS)
126
+ model_id = 0 if model_choice == MODEL_OPTIONS[0] else 1
127
+
128
+ if "query" in st.session_state:
129
+ query = st.text_input("", value=st.session_state["query"])
130
+ else:
131
+ query = st.text_input("", value="time travel")
132
+
133
+ clicked = click_detector(semantic_search(query, model_id))
134
+
135
+ if clicked != "":
136
+ st.markdown(clicked)
137
+ change_query = False
138
+ if "last_clicked" not in st.session_state:
139
+ st.session_state["last_clicked"] = clicked
140
+ change_query = True
141
+ else:
142
+ if clicked != st.session_state["last_clicked"]:
143
+ st.session_state["last_clicked"] = clicked
144
+ change_query = True
145
+ if change_query:
146
+ st.session_state["query"] = f"[Similar:{clicked}] {df.iloc[int(clicked)].title}"
147
+ st.experimental_rerun()
embeddings.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64495712bf1903dd04604cd5641f5b521912d8938339e9e9e3071dad8952b34a
3
+ size 134876288
embeddings2.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:136aa7ffd5630d19dc88f1e779dbeb04011ef918ac3fba2148a8f5d58303d736
3
+ size 134876288
movies.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1da4fb07829b3f57bce3fa663641c50b3d3e65cdf949f6e6f340960a5acc1005
3
+ size 16293996
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ numpy
4
+ pandas
5
+ st-click-detector