Spaces:
Runtime error
Runtime error
File size: 9,794 Bytes
4a582ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Grad and Conn is refer to https://github.com/yucornetto/MGMatting/blob/main/code-base/utils/evaluate.py
# Output of `Grad` is sightly different from the MATLAB version provided by Adobe (less than 0.1%)
# Output of `Conn` is smaller than the MATLAB version (~5%, maybe MATLAB has a different algorithm)
# So do not report results calculated by these functions in your paper.
# Evaluate your inference with the MATLAB file `DIM_evaluation_code/evaluate.m`.
import cv2
import numpy as np
from scipy.ndimage import convolve
from scipy.special import gamma
from skimage.measure import label
class MSE:
"""
Only calculate the unknown region if trimap provided.
"""
def __init__(self):
self.mse_diffs = 0
self.count = 0
def update(self, pred, gt, trimap=None):
"""
update metric.
Args:
pred (np.ndarray): The value range is [0., 255.].
gt (np.ndarray): The value range is [0, 255].
trimap (np.ndarray, optional) The value is in {0, 128, 255}. Default: None.
"""
if trimap is None:
trimap = np.ones_like(gt) * 128
if not (pred.shape == gt.shape == trimap.shape):
raise ValueError(
'The shape of `pred`, `gt` and `trimap` should be equal. '
'but they are {}, {} and {}'.format(pred.shape, gt.shape,
trimap.shape))
pred[trimap == 0] = 0
pred[trimap == 255] = 255
mask = trimap == 128
pixels = float(mask.sum())
pred = pred / 255.
gt = gt / 255.
diff = (pred - gt) * mask
mse_diff = (diff**2).sum() / pixels if pixels > 0 else 0
self.mse_diffs += mse_diff
self.count += 1
return mse_diff
def evaluate(self):
mse = self.mse_diffs / self.count if self.count > 0 else 0
return mse
class SAD:
"""
Only calculate the unknown region if trimap provided.
"""
def __init__(self):
self.sad_diffs = 0
self.count = 0
def update(self, pred, gt, trimap=None):
"""
update metric.
Args:
pred (np.ndarray): The value range is [0., 255.].
gt (np.ndarray): The value range is [0., 255.].
trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None.
"""
if trimap is None:
trimap = np.ones_like(gt) * 128
if not (pred.shape == gt.shape == trimap.shape):
raise ValueError(
'The shape of `pred`, `gt` and `trimap` should be equal. '
'but they are {}, {} and {}'.format(pred.shape, gt.shape,
trimap.shape))
pred[trimap == 0] = 0
pred[trimap == 255] = 255
mask = trimap == 128
pred = pred / 255.
gt = gt / 255.
diff = (pred - gt) * mask
sad_diff = (np.abs(diff)).sum()
sad_diff /= 1000
self.sad_diffs += sad_diff
self.count += 1
return sad_diff
def evaluate(self):
sad = self.sad_diffs / self.count if self.count > 0 else 0
return sad
class Grad:
"""
Only calculate the unknown region if trimap provided.
Refer to: https://github.com/open-mlab/mmediting/blob/master/mmedit/core/evaluation/metrics.py
"""
def __init__(self):
self.grad_diffs = 0
self.count = 0
def gaussian(self, x, sigma):
return np.exp(-x**2 / (2 * sigma**2)) / (sigma * np.sqrt(2 * np.pi))
def dgaussian(self, x, sigma):
return -x * self.gaussian(x, sigma) / sigma**2
def gauss_filter(self, sigma, epsilon=1e-2):
half_size = np.ceil(
sigma * np.sqrt(-2 * np.log(np.sqrt(2 * np.pi) * sigma * epsilon)))
size = int(2 * half_size + 1)
# create filter in x axis
filter_x = np.zeros((size, size))
for i in range(size):
for j in range(size):
filter_x[i, j] = self.gaussian(
i - half_size, sigma) * self.dgaussian(j - half_size, sigma)
# normalize filter
norm = np.sqrt((filter_x**2).sum())
filter_x = filter_x / norm
filter_y = np.transpose(filter_x)
return filter_x, filter_y
def gauss_gradient(self, img, sigma):
filter_x, filter_y = self.gauss_filter(sigma)
img_filtered_x = cv2.filter2D(
img, -1, filter_x, borderType=cv2.BORDER_REPLICATE)
img_filtered_y = cv2.filter2D(
img, -1, filter_y, borderType=cv2.BORDER_REPLICATE)
return np.sqrt(img_filtered_x**2 + img_filtered_y**2)
def update(self, pred, gt, trimap=None, sigma=1.4):
"""
update metric.
Args:
pred (np.ndarray): The value range is [0., 1.].
gt (np.ndarray): The value range is [0, 255].
trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None.
sigma (float, optional): Standard deviation of the gaussian kernel. Default: 1.4.
"""
if trimap is None:
trimap = np.ones_like(gt) * 128
if not (pred.shape == gt.shape == trimap.shape):
raise ValueError(
'The shape of `pred`, `gt` and `trimap` should be equal. '
'but they are {}, {} and {}'.format(pred.shape, gt.shape,
trimap.shape))
pred[trimap == 0] = 0
pred[trimap == 255] = 255
gt = gt.squeeze()
pred = pred.squeeze()
gt = gt.astype(np.float64)
pred = pred.astype(np.float64)
gt_normed = np.zeros_like(gt)
pred_normed = np.zeros_like(pred)
cv2.normalize(gt, gt_normed, 1., 0., cv2.NORM_MINMAX)
cv2.normalize(pred, pred_normed, 1., 0., cv2.NORM_MINMAX)
gt_grad = self.gauss_gradient(gt_normed, sigma).astype(np.float32)
pred_grad = self.gauss_gradient(pred_normed, sigma).astype(np.float32)
grad_diff = ((gt_grad - pred_grad)**2 * (trimap == 128)).sum()
grad_diff /= 1000
self.grad_diffs += grad_diff
self.count += 1
return grad_diff
def evaluate(self):
grad = self.grad_diffs / self.count if self.count > 0 else 0
return grad
class Conn:
"""
Only calculate the unknown region if trimap provided.
Refer to: Refer to: https://github.com/open-mlab/mmediting/blob/master/mmedit/core/evaluation/metrics.py
"""
def __init__(self):
self.conn_diffs = 0
self.count = 0
def update(self, pred, gt, trimap=None, step=0.1):
"""
update metric.
Args:
pred (np.ndarray): The value range is [0., 1.].
gt (np.ndarray): The value range is [0, 255].
trimap (np.ndarray, optional)L The value is in {0, 128, 255}. Default: None.
step (float, optional): Step of threshold when computing intersection between
`gt` and `pred`. Default: 0.1.
"""
if trimap is None:
trimap = np.ones_like(gt) * 128
if not (pred.shape == gt.shape == trimap.shape):
raise ValueError(
'The shape of `pred`, `gt` and `trimap` should be equal. '
'but they are {}, {} and {}'.format(pred.shape, gt.shape,
trimap.shape))
pred[trimap == 0] = 0
pred[trimap == 255] = 255
gt = gt.squeeze()
pred = pred.squeeze()
gt = gt.astype(np.float32) / 255
pred = pred.astype(np.float32) / 255
thresh_steps = np.arange(0, 1 + step, step)
round_down_map = -np.ones_like(gt)
for i in range(1, len(thresh_steps)):
gt_thresh = gt >= thresh_steps[i]
pred_thresh = pred >= thresh_steps[i]
intersection = (gt_thresh & pred_thresh).astype(np.uint8)
# connected components
_, output, stats, _ = cv2.connectedComponentsWithStats(
intersection, connectivity=4)
# start from 1 in dim 0 to exclude background
size = stats[1:, -1]
# largest connected component of the intersection
omega = np.zeros_like(gt)
if len(size) != 0:
max_id = np.argmax(size)
# plus one to include background
omega[output == max_id + 1] = 1
mask = (round_down_map == -1) & (omega == 0)
round_down_map[mask] = thresh_steps[i - 1]
round_down_map[round_down_map == -1] = 1
gt_diff = gt - round_down_map
pred_diff = pred - round_down_map
# only calculate difference larger than or equal to 0.15
gt_phi = 1 - gt_diff * (gt_diff >= 0.15)
pred_phi = 1 - pred_diff * (pred_diff >= 0.15)
conn_diff = np.sum(np.abs(gt_phi - pred_phi) * (trimap == 128))
conn_diff /= 1000
self.conn_diffs += conn_diff
self.count += 1
return conn_diff
def evaluate(self):
conn = self.conn_diffs / self.count if self.count > 0 else 0
return conn
|