import os import pickle import streamlit as st import tensorflow as tf from tensorflow.keras.layers import TextVectorization @st.cache_resource def load_model(): model = tf.keras.models.load_model(os.path.join("model", "toxmodel.keras")) return model @st.cache_resource def load_vectorizer(): from_disk = pickle.load(open(os.path.join("model", "vectorizer.pkl"), "rb")) new_v = TextVectorization.from_config(from_disk['config']) new_v.adapt(tf.data.Dataset.from_tensor_slices(["xyz"])) # Keras bug new_v.set_weights(from_disk['weights']) return new_v @st.cache_resource def load_vocab(): vocab = {} with open('vocab.txt', 'r') as f: for line in f: token, index = line.strip().split('\t') vocab[token] = int(index) st.title("Toxic Comment Test") st.divider() model = load_model() vectorizer = load_vectorizer() input_text = st.text_area("Comment:", "I love you man, but fuck you!", height=150) if st.button("Test"): with st.spinner("Testing..."): inputv = vectorizer([input_text]) output = model.predict(inputv) res = (output > 0.5) st.write(["toxic","severe toxic","obscene","threat","insult","identity hate"], res) st.write(output) print(output)