import os import pickle import streamlit as st import tensorflow as tf from tensorflow.keras.layers import TextVectorization @st.cache_resource def load_model():     model = tf.keras.models.load_model(os.path.join("model", "toxmodel.keras"))     return model @st.cache_resource def load_vectorizer():     from_disk = pickle.load(open(os.path.join("model", "vectorizer.pkl"), "rb"))     new_v = TextVectorization.from_config(from_disk['config'])     new_v.adapt(tf.data.Dataset.from_tensor_slices(["xyz"])) # fix for Keras bug     new_v.set_weights(from_disk['weights'])     return new_v st.title("Toxic Comment Test") st.divider() model = load_model() vectorizer = load_vectorizer() default_prompt = "I love you man, but fuck you!" input_text = st.text_area("Comment:", default_prompt, height=150).lower() if st.button("Test"):     if not input_text:         st.write("⚠ Warning: Empty prompt.")     elif len(input_text) < 15:         st.write("⚠ Warning: Model is far less accurate with a small prompt.")     if input_text == default_prompt:         st.write("Expected results from default prompt are positive for 0 and 2")     with st.spinner("Testing..."):         inputv = vectorizer([input_text])         output = model.predict(inputv)         res = (output > 0.5)     st.write(["toxic","severe toxic","obscene","threat","insult","identity hate"], res)     st.write(output)