SAM_test / app.py
vmoras's picture
Update app.py
91feba4
raw
history blame
3.34 kB
import gradio as gr
import ast
import cv2
import torch
import traceback
import numpy as np
from itertools import chain
from transformers import SamModel, SamProcessor
model = SamModel.from_pretrained('facebook/sam-vit-huge')
processor = SamProcessor.from_pretrained('facebook/sam-vit-huge')
def set_predictor(image):
"""
Creates a Sam predictor object based on a given image and model.
"""
device = 'cpu'
inputs = processor(image, return_tensors='pt').to(device)
image_embedding = model.get_image_embeddings(inputs['pixel_values'])
return [image, image_embedding, 'Done']
def get_polygon(points, image, image_embedding):
"""
Returns the points of the polygon given a bounding box and a prediction
made by Sam.
"""
points = list(chain.from_iterable(points))
device = 'cpu'
inputs = processor(image, input_boxes=[points], return_tensors="pt").to(device)
# pop the pixel_values as they are not neded
inputs.pop("pixel_values", None)
inputs.update({"image_embeddings": image_embedding})
with torch.no_grad():
outputs = model(**inputs)
masks = processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)
mask = masks[0].squeeze().numpy()
img = mask.astype(np.uint8)[0]
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) == 0:
return [], img
points = contours[0]
polygon = []
for point in points:
for x, y in point:
polygon.append([int(x), int(y)])
mask = np.zeros(image.shape, dtype='uint8')
poly = np.array(polygon)
cv2.fillPoly(mask, [poly], (0, 255, 0))
return polygon, mask
def add_bbox(bbox, evt: gr.SelectData):
if bbox[0] == [0, 0]:
bbox[0] = [evt.index[0], evt.index[1]]
return bbox, bbox
bbox[1] = [evt.index[0], evt.index[1]]
return bbox, bbox
def clear_bbox(bbox):
updated_bbox = [[0, 0], [0, 0]]
return updated_bbox, updated_bbox
with gr.Blocks() as demo:
image = gr.State()
embedding = gr.State()
bbox = gr.State([[0, 0], [0, 0]])
with gr.Row():
input_image = gr.Image(label='Image')
mask = gr.Image(label='Mask')
with gr.Row():
with gr.Column():
output_status = gr.Textbox(label='Status')
with gr.Column():
predictor_button = gr.Button('Send Image')
with gr.Row():
with gr.Column():
bbox_box = gr.Textbox(label="bbox")
with gr.Column():
bbox_button = gr.Button('Clear bbox')
with gr.Row():
with gr.Column():
polygon = gr.Textbox(label='Polygon')
with gr.Column():
points_button = gr.Button('Send bounding box')
predictor_button.click(
set_predictor,
input_image,
[image, embedding, output_status],
)
points_button.click(
get_polygon,
[bbox, image, embedding],
[polygon, mask],
)
bbox_button.click(
clear_bbox,
bbox,
[bbox, bbox_box],
)
input_image.select(
add_bbox,
bbox,
[bbox, bbox_box]
)
demo.launch(debug=True)