Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
import cv2
|
|
|
4 |
import traceback
|
5 |
import numpy as np
|
|
|
6 |
from transformers import SamModel, SamProcessor
|
7 |
|
8 |
|
9 |
-
model = SamModel.from_pretrained('facebook/sam-vit-huge').to('
|
10 |
processor = SamProcessor.from_pretrained('facebook/sam-vit-huge')
|
11 |
|
12 |
|
@@ -14,7 +16,8 @@ def set_predictor(image):
|
|
14 |
"""
|
15 |
Creates a Sam predictor object based on a given image and model.
|
16 |
"""
|
17 |
-
|
|
|
18 |
image_embedding = model.get_image_embeddings(inputs['pixel_values'])
|
19 |
|
20 |
return [image, image_embedding, 'Done']
|
@@ -23,11 +26,14 @@ def set_predictor(image):
|
|
23 |
def get_polygon(points, image, image_embedding):
|
24 |
"""
|
25 |
Returns the points of the polygon given a bounding box and a prediction
|
26 |
-
made by Sam
|
27 |
"""
|
28 |
-
points = [int(w) for w in points.split(',')]
|
|
|
|
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
# pop the pixel_values as they are not neded
|
33 |
inputs.pop("pixel_values", None)
|
@@ -43,39 +49,69 @@ def get_polygon(points, image, image_embedding):
|
|
43 |
)
|
44 |
|
45 |
mask = masks[0].squeeze().numpy()
|
46 |
-
|
47 |
img = mask.astype(np.uint8)[0]
|
48 |
-
|
49 |
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
50 |
|
51 |
if len(contours) == 0:
|
52 |
-
return [
|
53 |
-
|
54 |
points = contours[0]
|
|
|
55 |
polygon = []
|
56 |
for point in points:
|
57 |
for x, y in point:
|
58 |
polygon.append([int(x), int(y)])
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
|
|
|
|
|
|
63 |
|
64 |
-
|
|
|
65 |
image = gr.State()
|
66 |
embedding = gr.State()
|
|
|
67 |
|
68 |
-
with gr.
|
69 |
input_image = gr.Image(label='Image')
|
70 |
-
|
71 |
-
predictor_button = gr.Button('Send Image')
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
79 |
|
80 |
|
81 |
predictor_button.click(
|
@@ -90,4 +126,17 @@ with gr.Blocks() as app:
|
|
90 |
[polygon, mask],
|
91 |
)
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import ast
|
3 |
import cv2
|
4 |
+
import torch
|
5 |
import traceback
|
6 |
import numpy as np
|
7 |
+
from itertools import chain
|
8 |
from transformers import SamModel, SamProcessor
|
9 |
|
10 |
|
11 |
+
model = SamModel.from_pretrained('facebook/sam-vit-huge').to('cuda')
|
12 |
processor = SamProcessor.from_pretrained('facebook/sam-vit-huge')
|
13 |
|
14 |
|
|
|
16 |
"""
|
17 |
Creates a Sam predictor object based on a given image and model.
|
18 |
"""
|
19 |
+
device = 'cuda'
|
20 |
+
inputs = processor(image, return_tensors='pt').to(device)
|
21 |
image_embedding = model.get_image_embeddings(inputs['pixel_values'])
|
22 |
|
23 |
return [image, image_embedding, 'Done']
|
|
|
26 |
def get_polygon(points, image, image_embedding):
|
27 |
"""
|
28 |
Returns the points of the polygon given a bounding box and a prediction
|
29 |
+
made by Sam.
|
30 |
"""
|
31 |
+
#points = [int(w) for w in points.split(',')]
|
32 |
+
points = list(chain.from_iterable(points))
|
33 |
+
print(points)
|
34 |
|
35 |
+
device = 'cuda'
|
36 |
+
inputs = processor(image, input_boxes=[points], return_tensors="pt").to(device)
|
37 |
|
38 |
# pop the pixel_values as they are not neded
|
39 |
inputs.pop("pixel_values", None)
|
|
|
49 |
)
|
50 |
|
51 |
mask = masks[0].squeeze().numpy()
|
|
|
52 |
img = mask.astype(np.uint8)[0]
|
|
|
53 |
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
54 |
|
55 |
if len(contours) == 0:
|
56 |
+
return [], img
|
57 |
+
|
58 |
points = contours[0]
|
59 |
+
|
60 |
polygon = []
|
61 |
for point in points:
|
62 |
for x, y in point:
|
63 |
polygon.append([int(x), int(y)])
|
64 |
|
65 |
+
mask = np.zeros(image.shape, dtype='uint8')
|
66 |
+
poly = np.array(polygon)
|
67 |
+
cv2.fillPoly(mask, [poly], (0, 255, 0))
|
68 |
+
|
69 |
+
return polygon, mask
|
70 |
+
|
71 |
+
|
72 |
+
def add_bbox(bbox, evt: gr.SelectData):
|
73 |
+
if bbox[0] == [0, 0]:
|
74 |
+
bbox[0] = [evt.index[0], evt.index[1]]
|
75 |
+
return bbox, bbox
|
76 |
+
|
77 |
+
bbox[1] = [evt.index[0], evt.index[1]]
|
78 |
+
return bbox, bbox
|
79 |
|
80 |
|
81 |
+
def clear_bbox(bbox):
|
82 |
+
updated_bbox = [[0, 0], [0, 0]]
|
83 |
+
return updated_bbox, updated_bbox
|
84 |
|
85 |
+
|
86 |
+
with gr.Blocks() as demo:
|
87 |
image = gr.State()
|
88 |
embedding = gr.State()
|
89 |
+
bbox = gr.State([[0, 0], [0, 0]])
|
90 |
|
91 |
+
with gr.Row():
|
92 |
input_image = gr.Image(label='Image')
|
93 |
+
mask = gr.Image(label='Mask')
|
|
|
94 |
|
95 |
+
with gr.Row():
|
96 |
+
with gr.Column():
|
97 |
+
output_status = gr.Textbox(label='Status')
|
98 |
+
|
99 |
+
with gr.Column():
|
100 |
+
predictor_button = gr.Button('Send Image')
|
101 |
+
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Column():
|
104 |
+
bbox_box = gr.Textbox(label="bbox")
|
105 |
|
106 |
+
with gr.Column():
|
107 |
+
bbox_button = gr.Button('Clear bbox')
|
108 |
+
|
109 |
+
with gr.Row():
|
110 |
+
with gr.Column():
|
111 |
+
polygon = gr.Textbox(label='Polygon')
|
112 |
+
|
113 |
+
with gr.Column():
|
114 |
+
points_button = gr.Button('Send bounding box')
|
115 |
|
116 |
|
117 |
predictor_button.click(
|
|
|
126 |
[polygon, mask],
|
127 |
)
|
128 |
|
129 |
+
bbox_button.click(
|
130 |
+
clear_bbox,
|
131 |
+
bbox,
|
132 |
+
[bbox, bbox_box],
|
133 |
+
)
|
134 |
+
|
135 |
+
input_image.select(
|
136 |
+
add_bbox,
|
137 |
+
bbox,
|
138 |
+
[bbox, bbox_box]
|
139 |
+
)
|
140 |
+
|
141 |
+
|
142 |
+
demo.launch(debug=True)
|