import os import cv2 import torch import traceback import numpy as np import gradio as gr from itertools import chain from huggingface_hub import hf_hub_download from segment_anything import SamPredictor, sam_model_registry hf_hub_download(repo_id="vmoras/sam_api", filename="sam_vit_h.pth") sam_checkpoint = "sam_vit_h.pth" model_type = "vit_h" device = 'cuda' if torch.cuda.is_available() else 'cpu' def set_predictor(image): """ Creates a Sam predictor object based on a given image and model. """ sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) sam.to(device=device) predictor = SamPredictor(sam) predictor.set_image(image) return [image, predictor, 'Done'] def get_polygon(points, image, predictor): """ Returns the points of the polygon given a bounding box and a prediction made by Sam. """ points = list(chain.from_iterable(points)) input_box = np.array(points) masks, _, _ = predictor.predict( box=input_box[None, :], multimask_output=False, ) img = masks[0].astype(np.uint8) contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) if len(contours) == 0: return [], img points = contours[0] polygon = [] for point in points: for x, y in point: polygon.append([int(x), int(y)]) mask = np.zeros(image.shape, dtype='uint8') poly = np.array(polygon) cv2.fillPoly(mask, [poly], (0, 255, 0)) return polygon, mask def add_bbox(bbox, evt: gr.SelectData): if bbox[0] == [0, 0]: bbox[0] = [evt.index[0], evt.index[1]] return bbox, bbox bbox[1] = [evt.index[0], evt.index[1]] return bbox, bbox def clear_bbox(bbox): updated_bbox = [[0, 0], [0, 0]] return updated_bbox, updated_bbox with gr.Blocks() as demo: gr.Markdown( """ # Instructions 1. Upload the image and press 'Send Image' 2. Wait until the word 'Done' appears on the 'Status' box 3. Click on the image where the upper left corner of the bbox should be 4. Click on the image where the lower right corner of the bbox should be 5. Check the coordinates using the 'bbox' box 6. Click on 'Send bounding box' 7. On the right side you will see the binary mask · 8. on the lower side you will see the points that made up the polygon · 9. Click on 'Clear bbox' to send another bounding box and repeat the steps from the thrid point 10. Repeat steps 3 to 9 until all the segments for this image are done 11. Click on the right corner of the image to remove it and repeat all the steps with the next image · If the binary mask is all black and the polygon is an empty list, it means the program did not find any segment in the bbox. Make the bbox a little big bigger if that happens. """) image = gr.State() embedding = gr.State() bbox = gr.State([[0, 0], [0, 0]]) with gr.Row(): input_image = gr.Image(label='Image') mask = gr.Image(label='Mask') with gr.Row(): with gr.Column(): output_status = gr.Textbox(label='Status') with gr.Column(): predictor_button = gr.Button('Send Image') with gr.Row(): with gr.Column(): bbox_box = gr.Textbox(label="bbox") with gr.Column(): bbox_button = gr.Button('Clear bbox') with gr.Row(): with gr.Column(): polygon = gr.Textbox(label='Polygon') with gr.Column(): points_button = gr.Button('Send bounding box') predictor_button.click( set_predictor, input_image, [image, embedding, output_status], ) points_button.click( get_polygon, [bbox, image, embedding], [polygon, mask], ) bbox_button.click( clear_bbox, bbox, [bbox, bbox_box], ) input_image.select( add_bbox, bbox, [bbox, bbox_box] ) demo.launch(debug=True, auth=(os.environ['user'], os.environ['password']))