import os import shutil import subprocess import streamlit as st import uuid from git import Repo import huggingface_hub BACKEND_REPO_URL = "https://github.com/vodkaslime/ctranslate2-converter-backend" HOME_DIR = os.path.expanduser("~") BACKEND_DIR = os.path.join(HOME_DIR, "backend") BACKEND_SCRIPT = os.path.join(BACKEND_DIR, "main.py") MODEL_ROOT_DIR = os.path.join(HOME_DIR, "models") st.title(":wave: CTranslate2 Model Converter") @st.cache_resource def init(): if os.path.exists(BACKEND_DIR): return try: Repo.clone_from(BACKEND_REPO_URL, BACKEND_DIR) subprocess.check_call( [ "pip", "install", "-r", os.path.join(BACKEND_DIR, "requirements.txt"), ] ) except Exception as e: shutil.rmtree(BACKEND_DIR) st.error(f"error initializing backend: {e}") def convert_and_upload_model( model, output_dir, inference_mode, prompt_template, huggingface_token, upload_mode, new_model, ): # Verify parameters if not model: st.error("Must provide a model name") return if not new_model: st.error("Must provide a new model name where the conversion will upload to") return if not huggingface_token: st.error("Must provide a huggingface token") return command = ["python", BACKEND_SCRIPT] command += ["--model", model] command += ["--output_dir", output_dir] command += ["--inference_mode", inference_mode] if prompt_template: command += ["--prompt_template", prompt_template] # Handle model conversion try: with st.spinner("Converting model"): subprocess.check_call(command) except subprocess.CalledProcessError as e: st.error(f"Error converting model to ctranslate2 format: {e}") return st.success("Model successfully converted") # Handle model upload try: with st.spinner("Uploading converted model"): huggingface_hub.login(huggingface_token) api = huggingface_hub.HfApi() if upload_mode == "new repo": api.create_repo(new_model) api.upload_folder(folder_path=output_dir, repo_id=new_model) except Exception as e: st.error(f"Error uploading model: {e}") return st.success("Model successfully uploaded.") def clean_up(output_dir): try: with st.spinner("Cleaning up"): shutil.rmtree(output_dir) except Exception as e: st.error(f"Error removing work dir: {e}") st.success("Cleaning up finished") init() model = st.text_input("Model name", placeholder="Salesforce/codet5p-220m") inference_mode = st.radio( "Inference mode", ("causallm", "seq2seq"), ) prompt_template = st.text_input("Prompt template") huggingface_token = st.text_input( "Hugging face token (must be writable token)", type="password" ) upload_mode = st.radio( "Choose if you want to create a new model repo or push a commit to existing repo", ("new repo", "existing repo"), ) new_model = st.text_input( "The new model name that the model is going to be converted to", placeholder="TabbyML/T5P-220M", ) convert_button = st.button("Convert model", use_container_width=True) if convert_button: id = uuid.uuid4() output_dir = os.path.join(MODEL_ROOT_DIR, str(id)) # Try converting and uploading model convert_and_upload_model( model, output_dir, inference_mode, prompt_template, huggingface_token, upload_mode, new_model, ) # Clean up the conversion clean_up(output_dir)