File size: 3,947 Bytes
4d9dd77
cb0039e
 
 
 
f5b6e30
cb0039e
4d9dd77
cb0039e
f5b6e30
 
cb0039e
4d9dd77
f5b6e30
 
4d9dd77
f5b6e30
cb0039e
 
 
 
 
 
a055f19
cb0039e
a055f19
cb0039e
 
fe3337c
52d47ae
18ca43a
 
 
fe3337c
18ca43a
 
 
 
 
 
 
 
fe3337c
18ca43a
 
 
 
 
fe3337c
 
f5b6e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb0039e
f5b6e30
 
 
3f67191
 
7c44018
e12504f
67c7e19
f5b6e30
 
 
cb0039e
 
 
 
f5b6e30
cb0039e
 
 
 
 
 
f5b6e30
cb0039e
 
f5b6e30
 
cb0039e
f5b6e30
 
cb0039e
f5b6e30
7c44018
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import streamlit as st
import pandas as pd
import re
import json
import transformers
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification, Trainer

st.set_page_config(
    page_title="Named Entity Recognition Wolof",
    page_icon="πŸ“˜"
)

def convert_df(df: pd.DataFrame):
    return df.to_csv(index=False).encode('utf-8')

def convert_json(df: pd.DataFrame):
    result = df.to_json(orient="index")
    parsed = json.loads(result)
    json_string = json.dumps(parsed)
    return json_string

def load_model():
    model = AutoModelForTokenClassification.from_pretrained("vonewman/wolof-finetuned-ner")
    trainer = Trainer(model=model)
    tokenizer = AutoTokenizer.from_pretrained("vonewman/wolof-finetuned-ner")
    return trainer, model, tokenizer

def align_word_ids(texts):
    trainer, model, tokenizer = load_model()
    tokenized_inputs = tokenizer(texts, padding='max_length', max_length=218, truncation=True)
    word_ids = tokenized_inputs.word_ids()
    previous_word_idx = None
    label_ids = []
    for word_idx in word_ids:
        if word_idx is None:
            label_ids.append(-100)
        elif word_idx != previous_word_idx:
            try:
                label_ids.append(1)
            except:
                label_ids.append(-100)
        else:
            try:
                label_ids.append(1 if label_all_tokens else -100)
            except:
                label_ids.append(-100)
        previous_word_idx = word_idx
    return label_ids

def predict_ner_labels(model, tokenizer, sentence):
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    if use_cuda:
        model = model.cuda()
    text = tokenizer(sentence, padding='max_length', max_length=218, truncation=True, return_tensors="pt")
    mask = text['attention_mask'].to(device)
    input_id = text['input_ids'].to(device)
    label_ids = torch.Tensor(align_word_ids(sentence)).unsqueeze(0).to(device)
    logits = model(input_id, mask, None)
    logits_clean = logits[0][label_ids != -100]
    predictions = logits_clean.argmax(dim=1).tolist()
    prediction_label = [id2tag[i] for i in predictions]
    return prediction_label

id2tag = {0: 'O', 1: 'B-LOC', 2: 'B-PER', 3: 'I-PER', 4: 'B-ORG', 5: 'I-DATE', 6: 'B-DATE', 7: 'I-ORG', 8: 'I-LOC'}

def tag_sentence(text):
    trainer, model, tokenizer = load_model()
    predictions = predict_ner_labels(model, tokenizer, text)
    # CrΓ©ez un DataFrame avec les colonnes "words" et "tags"
    df = pd.DataFrame({'words': text.split(), 'tags': predictions})
    df['tags'] = df['tags'].map(lambda x: f'background-color: lightblue' if x != 'O' else '')
    return df

st.title("πŸ“˜ Named Entity Recognition Wolof")

with st.form(key='my_form'):
    x1 = st.text_input(label='Enter a sentence:', max_chars=250)
    submit_button = st.form_submit_button(label='🏷️ Create tags')

if submit_button:
    if re.sub('\s+', '', x1) == '':
        st.error('Please enter a non-empty sentence.')
    elif re.match(r'\A\s*\w+\s*\Z', x1):
        st.error("Please enter a sentence with at least one word")
    else:
        st.markdown("### Tagged Sentence")
        st.header("")
        results = tag_sentence(x1)
        cs, c1, c2, c3, cLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
        with c1:
            csvbutton = st.download_button(label="πŸ“₯ Download .csv", data=convert_df(results),
                                           file_name="results.csv", mime='text/csv', key='csv')
        with c2:
            textbutton = st.download_button(label="πŸ“₯ Download .txt", data=convert_df(results),
                                            file_name="results.text", mime='text/plain', key='text')
        with c3:
            jsonbutton = st.download_button(label="πŸ“₯ Download .json", data=convert_json(results),
                                            file_name="results.json", mime='application/json