File size: 4,227 Bytes
4d9dd77 cb0039e 4d9dd77 cb0039e 4d9dd77 cb0039e e7cf3ed cb0039e 4d9dd77 cb0039e bbf7868 cb0039e a055f19 cb0039e a055f19 cb0039e 967c296 cb0039e a055f19 cb0039e a055f19 cb0039e a055f19 cb0039e 4d9dd77 cb0039e a055f19 e699409 a055f19 cb0039e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import streamlit as st
import pandas as pd
import numpy as np
import re
import json
import base64
import uuid
import transformers
from datasets import Dataset,load_dataset, load_from_disk
from transformers import AutoTokenizer, AutoModelForTokenClassification, Trainer
st.set_page_config(
page_title="Named Entity Recognition Wolof", page_icon="π"
)
def convert_df(df:pd.DataFrame):
return df.to_csv(index=False).encode('utf-8')
#@st.cache
def convert_json(df:pd.DataFrame):
result = df.to_json(orient="index")
parsed = json.loads(result)
json_string = json.dumps(parsed)
#st.json(json_string, expanded=True)
return json_string
st.title("πNamed Entity Recognition Wolof")
@st.cache(allow_output_mutation=True)
def load_model():
model = AutoModelForTokenClassification.from_pretrained("vonewman/wolof-finetuned-ner")
trainer = Trainer(model=model)
tokenizer = AutoTokenizer.from_pretrained("vonewman/wolof-finetuned-ner")
return trainer, model, tokenizer
id2tag = {0: 'O',
1: 'B-LOC',
2: 'B-PER',
3: 'I-PER',
4: 'B-ORG',
5: 'I-DATE',
6: 'B-DATE',
7: 'I-ORG',
8: 'I-LOC'
}
def tag_sentence(text:str):
# convert our text to a tokenized sequence
inputs = tokenizer(text, truncation=True, return_tensors="pt")
# get outputs
outputs = model(**inputs)
# convert to probabilities with softmax
probs = outputs[0][0].softmax(1)
# get the tags with the highest probability
word_tags = [(tokenizer.decode(inputs['input_ids'][0][i].item()), id2tag[tagid.item()], np.round(probs[i][tagid].item() *100,2) )
for i, tagid in enumerate (probs.argmax(axis=1))]
df=pd.DataFrame(word_tags, columns=['word', 'tag', 'probability'])
return df
with st.form(key='my_form'):
x1 = st.text_input(label='Enter a sentence:', max_chars=250)
print(x1)
submit_button = st.form_submit_button(label='π·οΈ Create tags')
if submit_button:
if re.sub('\s+','',x1)=='':
st.error('Please enter a non-empty sentence.')
elif re.match(r'\A\s*\w+\s*\Z', x1):
st.error("Please enter a sentence with at least one word")
else:
st.markdown("### Tagged Sentence")
st.header("")
Trainer, model, tokenizer = load_model()
results=tag_sentence(x1)
cs, c1, c2, c3, cLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
with c1:
#csvbutton = download_button(results, "results.csv", "π₯ Download .csv")
csvbutton = st.download_button(label="π₯ Download .csv", data=convert_df(results),
file_name= "results.csv", mime='text/csv', key='csv')
with c2:
#textbutton = download_button(results, "results.txt", "π₯ Download .txt")
textbutton = st.download_button(label="π₯ Download .txt", data=convert_df(results),
file_name= "results.text", mime='text/plain', key='text')
with c3:
#jsonbutton = download_button(results, "results.json", "π₯ Download .json")
jsonbutton = st.download_button(label="π₯ Download .json", data=convert_json(results),
file_name= "results.json", mime='application/json', key='json')
st.header("")
c1, c2, c3 = st.columns([1, 3, 1])
with c2:
st.table(results.style.background_gradient(subset=['probability']).format(precision=2))
st.header("")
st.header("")
st.header("")
with st.expander("βΉοΈ - About this app", expanded=True):
st.write(
"""
- The **Named Entity Recognition Wolof** app is a tool that performs named entity recognition in Wolof.
- The available entitites are: *corporation*, *location*, *person* and *date*.
- The app uses the [XLMRoberta model](https://huggingface.co/xlm-roberta-base), fine-tuned on the [masakhaNER](https://huggingface.co/datasets/masakhane/masakhaner2) dataset.
- The model uses the **byte-level BPE tokenizer**. Each sentece is first tokenized.
"""
) |