File size: 4,592 Bytes
08eb663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
345d423
08eb663
345d423
08eb663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import streamlit as st
import pandas as pd
import re
import json
import transformers
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification, Trainer

st.set_page_config(
    page_title="Named Entity Recognition Wolof",
    page_icon="📘"
)

def convert_df(df: pd.DataFrame):
    return df.to_csv(index=False).encode('utf-8')

def convert_json(df: pd.DataFrame):
    result = df.to_json(orient="index")
    parsed = json.loads(result)
    json_string = json.dumps(parsed)
    return json_string

def load_model():
    model = AutoModelForTokenClassification.from_pretrained("vonewman/wolof-finetuned-ner")
    trainer = Trainer(model=model)
    tokenizer = AutoTokenizer.from_pretrained("vonewman/wolof-finetuned-ner")
    return trainer, model, tokenizer

def align_word_ids(texts):
    trainer, model, tokenizer = load_model()
    tokenized_inputs = tokenizer(texts, padding='max_length', max_length=218, truncation=True)
    word_ids = tokenized_inputs.word_ids()
    previous_word_idx = None
    label_ids = []
    for word_idx in word_ids:
        if word_idx is None:
            label_ids.append(-100)
        elif word_idx != previous_word_idx:
            try:
                label_ids.append(1)
            except:
                label_ids.append(-100)
        else:
            try:
                label_ids.append(1 if label_all_tokens else -100)
            except:
                label_ids.append(-100)
        previous_word_idx = word_idx
    return label_ids

def predict_ner_labels(model, tokenizer, sentence):
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    if use_cuda:
        model = model.cuda()
    text = tokenizer(sentence, padding='max_length', max_length=218, truncation=True, return_tensors="pt")
    mask = text['attention_mask'].to(device)
    input_id = text['input_ids'].to(device)
    label_ids = torch.Tensor(align_word_ids(sentence)).unsqueeze(0).to(device)
    logits = model(input_id, mask, None)
    logits_clean = logits[0][label_ids != -100]
    predictions = logits_clean.argmax(dim=1).tolist()
    prediction_label = [id2tag[i] for i in predictions]
    return prediction_label

id2tag = {0: 'O', 1: 'B-LOC', 2: 'B-PER', 3: 'I-PER', 4: 'B-ORG', 5: 'I-DATE', 6: 'B-DATE', 7: 'I-ORG', 8: 'I-LOC'}

def tag_sentence(text):
    trainer, model, tokenizer = load_model()
    predictions = predict_ner_labels(model, tokenizer, text)
    # Créez un DataFrame avec les colonnes "words" et "tags"
    df = pd.DataFrame({'words': text.split(), 'tags': predictions})
    return df

st.title("📘 Named Entity Recognition Wolof")

with st.form(key='my_form'):
    x1 = st.text_input(label='Enter a sentence:', max_chars=250)
    submit_button = st.form_submit_button(label='🏷️ Create tags')

if submit_button:
    if re.sub('\s+', '', x1) == '':
        st.error('Please enter a non-empty sentence.')
    elif re.match(r'\A\s*\w+\s*\Z', x1):
        st.error("Please enter a sentence with at least one word")
    else:
        st.markdown("### Tagged Sentence")
        st.header("")
        results = tag_sentence(x1)
        cs, c1, c2, c3, cLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
        with c1:
            csvbutton = st.download_button(label="📥 Download .csv", data=convert_df(results),
                                           file_name="results.csv", mime='text/csv', key='csv')
        with c2:
            textbutton = st.download_button(label="📥 Download .txt", data=convert_df(results),
                                            file_name="results.text", mime='text/plain', key='text')
        with c3:
            jsonbutton = st.download_button(label="📥 Download .json", data=convert_json(results),
                                            file_name="results.json", mime='application/json', key='json')
        st.header("")
        c1, c2, c3 = st.columns([1, 3, 1])
        with c2:
            st.table(results[['words', 'tags']])

st.header("")
st.header("")
st.header("")
with st.expander("ℹ️ - About this app", expanded=True):
    st.write(
        """
-   The **Named Entity Recognition Wolof** app is a tool that performs named entity recognition in Wolof.
-   The available entities are: *corporation*, *location*, *person*, and *date*.
-   The app uses the [XLMRoberta model](https://huggingface.co/xlm-roberta-base), fine-tuned on the [masakhaNER](https://huggingface.co/datasets/masakhane/masakhaner2) dataset.
-   The model uses the **byte-level BPE tokenizer**. Each sentence is first tokenized.
        """
)