ner_app / app.py
vonewman's picture
Update app.py
56690ec
raw
history blame
4.7 kB
import streamlit as st
import pandas as pd
import re
import json
import transformers
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification, Trainer
st.set_page_config(
page_title="Named Entity Recognition Wolof",
page_icon="๐Ÿ“˜"
)
def convert_df(df: pd.DataFrame):
return df.to_csv(index=False).encode('utf-8')
def convert_json(df: pd.DataFrame):
result = df.to_json(orient="index")
parsed = json.loads(result)
json_string = json.dumps(parsed)
return json_string
def load_model():
model = AutoModelForTokenClassification.from_pretrained("vonewman/wolof-finetuned-ner")
trainer = Trainer(model=model)
tokenizer = AutoTokenizer.from_pretrained("vonewman/wolof-finetuned-ner")
return trainer, model, tokenizer
def align_word_ids(texts):
trainer, model, tokenizer = load_model()
tokenized_inputs = tokenizer(texts, padding='max_length', max_length=218, truncation=True)
word_ids = tokenized_inputs.word_ids()
previous_word_idx = None
label_ids = []
for word_idx in word_ids:
if word_idx is None:
label_ids.append(-100)
elif word_idx != previous_word_idx:
try:
label_ids.append(1)
except:
label_ids.append(-100)
else:
try:
label_ids.append(1 if label_all_tokens else -100)
except:
label_ids.append(-100)
previous_word_idx = word_idx
return label_ids
def predict_ner_labels(model, tokenizer, sentence):
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
if use_cuda:
model = model.cuda()
text = tokenizer(sentence, padding='max_length', max_length=218, truncation=True, return_tensors="pt")
mask = text['attention_mask'].to(device)
input_id = text['input_ids'].to(device)
label_ids = torch.Tensor(align_word_ids(sentence)).unsqueeze(0).to(device)
logits = model(input_id, mask, None)
logits_clean = logits[0][label_ids != -100]
predictions = logits_clean.argmax(dim=1).tolist()
prediction_label = [id2tag[i] for i in predictions]
return prediction_label
id2tag = {0: 'O', 1: 'B-LOC', 2: 'B-PER', 3: 'I-PER', 4: 'B-ORG', 5: 'I-DATE', 6: 'B-DATE', 7: 'I-ORG', 8: 'I-LOC'}
def tag_sentence(text):
trainer, model, tokenizer = load_model()
predictions = predict_ner_labels(model, tokenizer, text)
# Crรฉez un DataFrame avec les colonnes "words" et "tags"
df = pd.DataFrame({'words': text.split(), 'tags': predictions})
df['tags'] = df['tags'].map(lambda x: 'background-color: lightblue' if x != 'O' else '')
return df
st.title("๐Ÿ“˜ Named Entity Recognition Wolof")
with st.form(key='my_form'):
x1 = st.text_input(label='Enter a sentence:', max_chars=250)
submit_button = st.form_submit_button(label='๐Ÿท๏ธ Create tags')
if submit_button:
if re.sub('\s+', '', x1) == '':
st.error('Please enter a non-empty sentence.')
elif re.match(r'\A\s*\w+\s*\Z', x1):
st.error("Please enter a sentence with at least one word")
else:
st.markdown("### Tagged Sentence")
st.header("")
results = tag_sentence(x1)
cs, c1, c2, c3, cLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
with c1:
csvbutton = st.download_button(label="๐Ÿ“ฅ Download .csv", data=convert_df(results),
file_name="results.csv", mime='text/csv', key='csv')
with c2:
textbutton = st.download_button(label="๐Ÿ“ฅ Download .txt", data=convert_df(results),
file_name="results.text", mime='text/plain', key='text')
with c3:
jsonbutton = st.download_button(label="๐Ÿ“ฅ Download .json", data=convert_json(results),
file_name="results.json", mime='application/json', key='json')
st.header("")
c1, c2, c3 = st.columns([1, 3, 1])
with c2:
st.table(results.style.format(precision=2))
st.header("")
st.header("")
st.header("")
with st.expander("โ„น๏ธ - About this app", expanded=True):
st.write(
"""
- The **Named Entity Recognition Wolof** app is a tool that performs named entity recognition in Wolof.
- The available entities are: *corporation*, *location*, *person*, and *date*.
- The app uses the [XLMRoberta model](https://huggingface.co/xlm-roberta-base), fine-tuned on the [masakhaNER](https://huggingface.co/datasets/masakhane/masakhaner2) dataset.
- The model uses the **byte-level BPE tokenizer**. Each sentence is first tokenized.
"""
)