vonewman commited on
Commit
66f3b3e
1 Parent(s): 56690ec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -7
app.py CHANGED
@@ -70,7 +70,6 @@ def tag_sentence(text):
70
  predictions = predict_ner_labels(model, tokenizer, text)
71
  # Créez un DataFrame avec les colonnes "words" et "tags"
72
  df = pd.DataFrame({'words': text.split(), 'tags': predictions})
73
- df['tags'] = df['tags'].map(lambda x: 'background-color: lightblue' if x != 'O' else '')
74
  return df
75
 
76
  st.title("📘 Named Entity Recognition Wolof")
@@ -98,23 +97,20 @@ if submit_button:
98
  with c3:
99
  jsonbutton = st.download_button(label="📥 Download .json", data=convert_json(results),
100
  file_name="results.json", mime='application/json', key='json')
101
-
102
  st.header("")
103
-
104
  c1, c2, c3 = st.columns([1, 3, 1])
105
-
106
  with c2:
107
- st.table(results.style.format(precision=2))
108
 
109
  st.header("")
110
  st.header("")
111
  st.header("")
112
  with st.expander("ℹ️ - About this app", expanded=True):
113
  st.write(
114
- """
115
  - The **Named Entity Recognition Wolof** app is a tool that performs named entity recognition in Wolof.
116
  - The available entities are: *corporation*, *location*, *person*, and *date*.
117
  - The app uses the [XLMRoberta model](https://huggingface.co/xlm-roberta-base), fine-tuned on the [masakhaNER](https://huggingface.co/datasets/masakhane/masakhaner2) dataset.
118
  - The model uses the **byte-level BPE tokenizer**. Each sentence is first tokenized.
119
  """
120
- )
 
70
  predictions = predict_ner_labels(model, tokenizer, text)
71
  # Créez un DataFrame avec les colonnes "words" et "tags"
72
  df = pd.DataFrame({'words': text.split(), 'tags': predictions})
 
73
  return df
74
 
75
  st.title("📘 Named Entity Recognition Wolof")
 
97
  with c3:
98
  jsonbutton = st.download_button(label="📥 Download .json", data=convert_json(results),
99
  file_name="results.json", mime='application/json', key='json')
 
100
  st.header("")
 
101
  c1, c2, c3 = st.columns([1, 3, 1])
 
102
  with c2:
103
+ st.table(results[['words', 'tags']])
104
 
105
  st.header("")
106
  st.header("")
107
  st.header("")
108
  with st.expander("ℹ️ - About this app", expanded=True):
109
  st.write(
110
+ """
111
  - The **Named Entity Recognition Wolof** app is a tool that performs named entity recognition in Wolof.
112
  - The available entities are: *corporation*, *location*, *person*, and *date*.
113
  - The app uses the [XLMRoberta model](https://huggingface.co/xlm-roberta-base), fine-tuned on the [masakhaNER](https://huggingface.co/datasets/masakhane/masakhaner2) dataset.
114
  - The model uses the **byte-level BPE tokenizer**. Each sentence is first tokenized.
115
  """
116
+ )