File size: 8,581 Bytes
70c3683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import datetime
from pathlib import Path
import gradio as gr
import random
from style_bert_vits2.constants import (
    DEFAULT_LENGTH,
    DEFAULT_LINE_SPLIT,
    DEFAULT_NOISE,
    DEFAULT_NOISEW,
    DEFAULT_SPLIT_INTERVAL,
)
from style_bert_vits2.logging import logger
from style_bert_vits2.models.infer import InvalidToneError
from style_bert_vits2.nlp.japanese import pyopenjtalk_worker as pyopenjtalk
from style_bert_vits2.tts_model import TTSModelHolder


pyopenjtalk.initialize_worker()

example_file = "chupa_examples.txt"

initial_text = (
    "ちゅぱ、ちゅるる、ぢゅ、んく、れーれゅれろれろれろ、じゅぽぽぽぽぽ……ちゅううう!"
)

with open(example_file, "r", encoding="utf-8") as f:
    examples = f.read().splitlines()


def get_random_text() -> str:
    return random.choice(examples)


initial_md = """
# チュパ音合成デモ

2024-07-07: initial ver
"""


def make_interactive():
    return gr.update(interactive=True, value="音声合成")


def make_non_interactive():
    return gr.update(interactive=False, value="音声合成(モデルをロードしてください)")


def gr_util(item):
    if item == "プリセットから選ぶ":
        return (gr.update(visible=True), gr.Audio(visible=False, value=None))
    else:
        return (gr.update(visible=False), gr.update(visible=True))


def create_inference_app(model_holder: TTSModelHolder) -> gr.Blocks:
    def tts_fn(
        model_name,
        model_path,
        text,
        language,
        sdp_ratio,
        noise_scale,
        noise_scale_w,
        length_scale,
        line_split,
        split_interval,
        speaker,
    ):
        model_holder.get_model(model_name, model_path)
        assert model_holder.current_model is not None

        speaker_id = model_holder.current_model.spk2id[speaker]

        start_time = datetime.datetime.now()

        try:
            sr, audio = model_holder.current_model.infer(
                text=text,
                language=language,
                sdp_ratio=sdp_ratio,
                noise=noise_scale,
                noise_w=noise_scale_w,
                length=length_scale,
                line_split=line_split,
                split_interval=split_interval,
                speaker_id=speaker_id,
            )
        except InvalidToneError as e:
            logger.error(f"Tone error: {e}")
            return f"Error: アクセント指定が不正です:\n{e}", None
        except ValueError as e:
            logger.error(f"Value error: {e}")
            return f"Error: {e}", None

        end_time = datetime.datetime.now()
        duration = (end_time - start_time).total_seconds()

        message = f"Success, time: {duration} seconds."
        return message, (sr, audio)

    def get_model_files(model_name: str):
        return [str(f) for f in model_holder.model_files_dict[model_name]]

    model_names = model_holder.model_names
    if len(model_names) == 0:
        logger.error(
            f"モデルが見つかりませんでした。{model_holder.root_dir}にモデルを置いてください。"
        )
        with gr.Blocks() as app:
            gr.Markdown(
                f"Error: モデルが見つかりませんでした。{model_holder.root_dir}にモデルを置いてください。"
            )
        return app

    initial_pth_files = get_model_files(model_names[0])
    model = model_holder.get_model(model_names[0], initial_pth_files[0])
    speakers = list(model.spk2id.keys())

    with gr.Blocks(theme="ParityError/Anime") as app:
        gr.Markdown(initial_md)
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    with gr.Column(scale=3):
                        model_name = gr.Dropdown(
                            label="モデル一覧",
                            choices=model_names,
                            value=model_names[0],
                        )
                        model_path = gr.Dropdown(
                            label="モデルファイル",
                            choices=initial_pth_files,
                            value=initial_pth_files[0],
                        )
                    refresh_button = gr.Button("更新", scale=1, visible=False)
                    load_button = gr.Button("ロード", scale=1, variant="primary")
                with gr.Row():
                    text_input = gr.TextArea(
                        label="テキスト", value=initial_text, scale=3
                    )
                    random_button = gr.Button("例から選ぶ 🎲", scale=1)
                    random_button.click(get_random_text, outputs=[text_input])
                with gr.Row():
                    length_scale = gr.Slider(
                        minimum=0.1,
                        maximum=2,
                        value=DEFAULT_LENGTH,
                        step=0.1,
                        label="生成音声の長さ(Length)",
                    )
                    sdp_ratio = gr.Slider(
                        minimum=0,
                        maximum=1,
                        value=1,
                        step=0.1,
                        label="SDP Ratio",
                    )
                line_split = gr.Checkbox(
                    label="改行で分けて生成(分けたほうが感情が乗ります)",
                    value=DEFAULT_LINE_SPLIT,
                    visible=False,
                )
                split_interval = gr.Slider(
                    minimum=0.0,
                    maximum=2,
                    value=DEFAULT_SPLIT_INTERVAL,
                    step=0.1,
                    label="改行ごとに挟む無音の長さ(秒)",
                )
                line_split.change(
                    lambda x: (gr.Slider(visible=x)),
                    inputs=[line_split],
                    outputs=[split_interval],
                )
                language = gr.Dropdown(
                    choices=["JP"], value="JP", label="Language", visible=False
                )
                speaker = gr.Dropdown(label="話者", choices=speakers, value=speakers[0])
                with gr.Accordion(label="詳細設定", open=True):
                    noise_scale = gr.Slider(
                        minimum=0.1,
                        maximum=2,
                        value=DEFAULT_NOISE,
                        step=0.1,
                        label="Noise",
                    )
                    noise_scale_w = gr.Slider(
                        minimum=0.1,
                        maximum=2,
                        value=DEFAULT_NOISEW,
                        step=0.1,
                        label="Noise_W",
                    )
            with gr.Column():
                tts_button = gr.Button("音声合成", variant="primary")
                text_output = gr.Textbox(label="情報")
                audio_output = gr.Audio(label="結果")

        tts_button.click(
            tts_fn,
            inputs=[
                model_name,
                model_path,
                text_input,
                language,
                sdp_ratio,
                noise_scale,
                noise_scale_w,
                length_scale,
                line_split,
                split_interval,
                speaker,
            ],
            outputs=[text_output, audio_output],
        )

        model_name.change(
            model_holder.update_model_files_for_gradio,
            inputs=[model_name],
            outputs=[model_path],
        )

        model_path.change(make_non_interactive, outputs=[tts_button])

        refresh_button.click(
            model_holder.update_model_names_for_gradio,
            outputs=[model_name, model_path, tts_button],
        )
        style = gr.Dropdown(label="スタイル", choices=[], visible=False)

        load_button.click(
            model_holder.get_model_for_gradio,
            inputs=[model_name, model_path],
            outputs=[style, tts_button, speaker],
        )

    return app


if __name__ == "__main__":
    import torch

    from style_bert_vits2.constants import Languages
    from style_bert_vits2.nlp import bert_models

    bert_models.load_model(Languages.JP)
    bert_models.load_tokenizer(Languages.JP)

    device = "cuda" if torch.cuda.is_available() else "cpu"
    model_holder = TTSModelHolder(Path("model_assets"), device)
    app = create_inference_app(model_holder)
    app.launch(inbrowser=True)