Spaces:
No application file
No application file
import numpy as np | |
import torch as t | |
import torch.nn as nn | |
from jukebox.vqvae.encdec import Encoder, Decoder, assert_shape | |
from jukebox.vqvae.bottleneck import NoBottleneck, Bottleneck | |
from jukebox.utils.logger import average_metrics | |
from jukebox.utils.audio_utils import spectral_convergence, spectral_loss, multispectral_loss, audio_postprocess | |
def dont_update(params): | |
for param in params: | |
param.requires_grad = False | |
def update(params): | |
for param in params: | |
param.requires_grad = True | |
def calculate_strides(strides, downs): | |
return [stride ** down for stride, down in zip(strides, downs)] | |
def _loss_fn(loss_fn, x_target, x_pred, hps): | |
if loss_fn == 'l1': | |
return t.mean(t.abs(x_pred - x_target)) / hps.bandwidth['l1'] | |
elif loss_fn == 'l2': | |
return t.mean((x_pred - x_target) ** 2) / hps.bandwidth['l2'] | |
elif loss_fn == 'linf': | |
residual = ((x_pred - x_target) ** 2).reshape(x_target.shape[0], -1) | |
values, _ = t.topk(residual, hps.linf_k, dim=1) | |
return t.mean(values) / hps.bandwidth['l2'] | |
elif loss_fn == 'lmix': | |
loss = 0.0 | |
if hps.lmix_l1: | |
loss += hps.lmix_l1 * _loss_fn('l1', x_target, x_pred, hps) | |
if hps.lmix_l2: | |
loss += hps.lmix_l2 * _loss_fn('l2', x_target, x_pred, hps) | |
if hps.lmix_linf: | |
loss += hps.lmix_linf * _loss_fn('linf', x_target, x_pred, hps) | |
return loss | |
else: | |
assert False, f"Unknown loss_fn {loss_fn}" | |
class VQVAE(nn.Module): | |
def __init__(self, input_shape, levels, downs_t, strides_t, | |
emb_width, l_bins, mu, commit, spectral, multispectral, | |
multipliers=None, use_bottleneck=True, **block_kwargs): | |
super().__init__() | |
self.sample_length = input_shape[0] | |
x_shape, x_channels = input_shape[:-1], input_shape[-1] | |
self.x_shape = x_shape | |
self.downsamples = calculate_strides(strides_t, downs_t) | |
self.hop_lengths = np.cumprod(self.downsamples) | |
self.z_shapes = z_shapes = [(x_shape[0] // self.hop_lengths[level],) for level in range(levels)] | |
self.levels = levels | |
if multipliers is None: | |
self.multipliers = [1] * levels | |
else: | |
assert len(multipliers) == levels, "Invalid number of multipliers" | |
self.multipliers = multipliers | |
def _block_kwargs(level): | |
this_block_kwargs = dict(block_kwargs) | |
this_block_kwargs["width"] *= self.multipliers[level] | |
this_block_kwargs["depth"] *= self.multipliers[level] | |
return this_block_kwargs | |
encoder = lambda level: Encoder(x_channels, emb_width, level + 1, | |
downs_t[:level+1], strides_t[:level+1], **_block_kwargs(level)) | |
decoder = lambda level: Decoder(x_channels, emb_width, level + 1, | |
downs_t[:level+1], strides_t[:level+1], **_block_kwargs(level)) | |
self.encoders = nn.ModuleList() | |
self.decoders = nn.ModuleList() | |
for level in range(levels): | |
self.encoders.append(encoder(level)) | |
self.decoders.append(decoder(level)) | |
if use_bottleneck: | |
self.bottleneck = Bottleneck(l_bins, emb_width, mu, levels) | |
else: | |
self.bottleneck = NoBottleneck(levels) | |
self.downs_t = downs_t | |
self.strides_t = strides_t | |
self.l_bins = l_bins | |
self.commit = commit | |
self.spectral = spectral | |
self.multispectral = multispectral | |
def preprocess(self, x): | |
# x: NTC [-1,1] -> NCT [-1,1] | |
assert len(x.shape) == 3 | |
x = x.permute(0,2,1).float() | |
return x | |
def postprocess(self, x): | |
# x: NTC [-1,1] <- NCT [-1,1] | |
x = x.permute(0,2,1) | |
return x | |
def _decode(self, zs, start_level=0, end_level=None): | |
# Decode | |
if end_level is None: | |
end_level = self.levels | |
assert len(zs) == end_level - start_level | |
xs_quantised = self.bottleneck.decode(zs, start_level=start_level, end_level=end_level) | |
assert len(xs_quantised) == end_level - start_level | |
# Use only lowest level | |
decoder, x_quantised = self.decoders[start_level], xs_quantised[0:1] | |
x_out = decoder(x_quantised, all_levels=False) | |
x_out = self.postprocess(x_out) | |
return x_out | |
def decode(self, zs, start_level=0, end_level=None, bs_chunks=1): | |
z_chunks = [t.chunk(z, bs_chunks, dim=0) for z in zs] | |
x_outs = [] | |
for i in range(bs_chunks): | |
zs_i = [z_chunk[i] for z_chunk in z_chunks] | |
x_out = self._decode(zs_i, start_level=start_level, end_level=end_level) | |
x_outs.append(x_out) | |
return t.cat(x_outs, dim=0) | |
def _encode(self, x, start_level=0, end_level=None): | |
# Encode | |
if end_level is None: | |
end_level = self.levels | |
x_in = self.preprocess(x) | |
xs = [] | |
for level in range(self.levels): | |
encoder = self.encoders[level] | |
x_out = encoder(x_in) | |
xs.append(x_out[-1]) | |
zs = self.bottleneck.encode(xs) | |
return zs[start_level:end_level] | |
def encode(self, x, start_level=0, end_level=None, bs_chunks=1): | |
x_chunks = t.chunk(x, bs_chunks, dim=0) | |
zs_list = [] | |
for x_i in x_chunks: | |
zs_i = self._encode(x_i, start_level=start_level, end_level=end_level) | |
zs_list.append(zs_i) | |
zs = [t.cat(zs_level_list, dim=0) for zs_level_list in zip(*zs_list)] | |
return zs | |
def sample(self, n_samples): | |
zs = [t.randint(0, self.l_bins, size=(n_samples, *z_shape), device='cuda') for z_shape in self.z_shapes] | |
return self.decode(zs) | |
def forward(self, x, hps, loss_fn='l1'): | |
metrics = {} | |
N = x.shape[0] | |
# Encode/Decode | |
x_in = self.preprocess(x) | |
xs = [] | |
for level in range(self.levels): | |
encoder = self.encoders[level] | |
x_out = encoder(x_in) | |
xs.append(x_out[-1]) | |
zs, xs_quantised, commit_losses, quantiser_metrics = self.bottleneck(xs) | |
x_outs = [] | |
for level in range(self.levels): | |
decoder = self.decoders[level] | |
x_out = decoder(xs_quantised[level:level+1], all_levels=False) | |
assert_shape(x_out, x_in.shape) | |
x_outs.append(x_out) | |
# Loss | |
def _spectral_loss(x_target, x_out, hps): | |
if hps.use_nonrelative_specloss: | |
sl = spectral_loss(x_target, x_out, hps) / hps.bandwidth['spec'] | |
else: | |
sl = spectral_convergence(x_target, x_out, hps) | |
sl = t.mean(sl) | |
return sl | |
def _multispectral_loss(x_target, x_out, hps): | |
sl = multispectral_loss(x_target, x_out, hps) / hps.bandwidth['spec'] | |
sl = t.mean(sl) | |
return sl | |
recons_loss = t.zeros(()).to(x.device) | |
spec_loss = t.zeros(()).to(x.device) | |
multispec_loss = t.zeros(()).to(x.device) | |
x_target = audio_postprocess(x.float(), hps) | |
for level in reversed(range(self.levels)): | |
x_out = self.postprocess(x_outs[level]) | |
x_out = audio_postprocess(x_out, hps) | |
this_recons_loss = _loss_fn(loss_fn, x_target, x_out, hps) | |
this_spec_loss = _spectral_loss(x_target, x_out, hps) | |
this_multispec_loss = _multispectral_loss(x_target, x_out, hps) | |
metrics[f'recons_loss_l{level + 1}'] = this_recons_loss | |
metrics[f'spectral_loss_l{level + 1}'] = this_spec_loss | |
metrics[f'multispectral_loss_l{level + 1}'] = this_multispec_loss | |
recons_loss += this_recons_loss | |
spec_loss += this_spec_loss | |
multispec_loss += this_multispec_loss | |
commit_loss = sum(commit_losses) | |
loss = recons_loss + self.spectral * spec_loss + self.multispectral * multispec_loss + self.commit * commit_loss | |
with t.no_grad(): | |
sc = t.mean(spectral_convergence(x_target, x_out, hps)) | |
l2_loss = _loss_fn("l2", x_target, x_out, hps) | |
l1_loss = _loss_fn("l1", x_target, x_out, hps) | |
linf_loss = _loss_fn("linf", x_target, x_out, hps) | |
quantiser_metrics = average_metrics(quantiser_metrics) | |
metrics.update(dict( | |
recons_loss=recons_loss, | |
spectral_loss=spec_loss, | |
multispectral_loss=multispec_loss, | |
spectral_convergence=sc, | |
l2_loss=l2_loss, | |
l1_loss=l1_loss, | |
linf_loss=linf_loss, | |
commit_loss=commit_loss, | |
**quantiser_metrics)) | |
for key, val in metrics.items(): | |
metrics[key] = val.detach() | |
return x_out, loss, metrics | |