Spaces:
Sleeping
Sleeping
prasanna kumar
commited on
Commit
β’
6e43644
1
Parent(s):
b9a925b
text box added and decoding issue fixed
Browse files
app.py
CHANGED
@@ -25,23 +25,29 @@ def create_vertical_histogram(data, title):
|
|
25 |
)
|
26 |
return fig
|
27 |
|
28 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
tokenizer = AutoTokenizer.from_pretrained(model_path + model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
if input_type == "Text":
|
32 |
-
text = input_value
|
33 |
elif input_type == "Token IDs":
|
34 |
-
|
35 |
-
token_ids = ast.literal_eval(input_value)
|
36 |
-
text = tokenizer.decode(token_ids)
|
37 |
-
except ValueError:
|
38 |
-
return "Error", "Invalid input", "", "", "", None, None, None
|
39 |
|
40 |
character_count = len(text)
|
41 |
word_count = len(text.split())
|
42 |
|
43 |
-
token_ids = tokenizer.encode(text, add_special_tokens=True)
|
44 |
-
tokens = tokenizer.convert_ids_to_tokens(token_ids)
|
45 |
|
46 |
space_count = sum(1 for token in tokens if token == 'β')
|
47 |
special_char_count = sum(1 for token in tokens if not token.isalnum() and token != 'β')
|
@@ -65,7 +71,7 @@ def process_input(input_type, input_value, model_name):
|
|
65 |
analysis += f"Special character tokens: {special_char_count}\n"
|
66 |
analysis += f"Other tokens: {len(tokens) - space_count - special_char_count}"
|
67 |
|
68 |
-
return analysis,
|
69 |
|
70 |
def text_example():
|
71 |
return "Hello, world! This is an example text input for tokenization."
|
@@ -90,6 +96,7 @@ with gr.Blocks() as iface:
|
|
90 |
submit_button = gr.Button("Process")
|
91 |
|
92 |
analysis_output = gr.Textbox(label="Analysis", lines=6)
|
|
|
93 |
tokens_output = gr.Textbox(label="Tokens", lines=3)
|
94 |
token_ids_output = gr.Textbox(label="Token IDs", lines=2)
|
95 |
|
@@ -111,7 +118,7 @@ with gr.Blocks() as iface:
|
|
111 |
submit_button.click(
|
112 |
process_input,
|
113 |
inputs=[input_type, input_text, model_name],
|
114 |
-
outputs=[analysis_output, tokens_output, token_ids_output, words_plot, special_chars_plot, numbers_plot]
|
115 |
)
|
116 |
|
117 |
if __name__ == "__main__":
|
|
|
25 |
)
|
26 |
return fig
|
27 |
|
28 |
+
def process_text(text:str,model_name):
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path + model_name)
|
30 |
+
token_ids = tokenizer.encode(text, add_special_tokens=True)
|
31 |
+
tokens = tokenizer.convert_ids_to_tokens(token_ids)
|
32 |
+
return text,tokens,token_ids,
|
33 |
+
|
34 |
+
def process_ids(ids:str,model_name):
|
35 |
tokenizer = AutoTokenizer.from_pretrained(model_path + model_name)
|
36 |
+
token_ids = ast.literal_eval(ids)
|
37 |
+
text = tokenizer.decode(token_ids)
|
38 |
+
tokens = tokenizer.convert_ids_to_tokens(token_ids)
|
39 |
+
return text,tokens,token_ids
|
40 |
+
|
41 |
+
def process_input(input_type, input_value, model_name):
|
42 |
|
43 |
if input_type == "Text":
|
44 |
+
text,tokens,token_ids = process_text(text=input_value,model_name=model_name)
|
45 |
elif input_type == "Token IDs":
|
46 |
+
text,tokens,token_ids = process_ids(ids=input_value,model_name=model_name)
|
|
|
|
|
|
|
|
|
47 |
|
48 |
character_count = len(text)
|
49 |
word_count = len(text.split())
|
50 |
|
|
|
|
|
51 |
|
52 |
space_count = sum(1 for token in tokens if token == 'β')
|
53 |
special_char_count = sum(1 for token in tokens if not token.isalnum() and token != 'β')
|
|
|
71 |
analysis += f"Special character tokens: {special_char_count}\n"
|
72 |
analysis += f"Other tokens: {len(tokens) - space_count - special_char_count}"
|
73 |
|
74 |
+
return analysis, text,tokens, str(token_ids), words_hist, special_chars_hist, numbers_hist
|
75 |
|
76 |
def text_example():
|
77 |
return "Hello, world! This is an example text input for tokenization."
|
|
|
96 |
submit_button = gr.Button("Process")
|
97 |
|
98 |
analysis_output = gr.Textbox(label="Analysis", lines=6)
|
99 |
+
text_output = gr.Textbox(label="Text",lines=6)
|
100 |
tokens_output = gr.Textbox(label="Tokens", lines=3)
|
101 |
token_ids_output = gr.Textbox(label="Token IDs", lines=2)
|
102 |
|
|
|
118 |
submit_button.click(
|
119 |
process_input,
|
120 |
inputs=[input_type, input_text, model_name],
|
121 |
+
outputs=[analysis_output,text_output ,tokens_output, token_ids_output, words_plot, special_chars_plot, numbers_plot]
|
122 |
)
|
123 |
|
124 |
if __name__ == "__main__":
|